L(s) = 1 | + (1 − 1.73i)3-s − 3·5-s + (2 + 3.46i)7-s + (−0.499 − 0.866i)9-s + (−3.5 − 0.866i)13-s + (−3 + 5.19i)15-s + (−1.5 − 2.59i)17-s + (−1 − 1.73i)19-s + 7.99·21-s + (3 − 5.19i)23-s + 4·25-s + 4.00·27-s + (−4.5 + 7.79i)29-s + 2·31-s + (−6 − 10.3i)35-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s − 1.34·5-s + (0.755 + 1.30i)7-s + (−0.166 − 0.288i)9-s + (−0.970 − 0.240i)13-s + (−0.774 + 1.34i)15-s + (−0.363 − 0.630i)17-s + (−0.229 − 0.397i)19-s + 1.74·21-s + (0.625 − 1.08i)23-s + 0.800·25-s + 0.769·27-s + (−0.835 + 1.44i)29-s + 0.359·31-s + (−1.01 − 1.75i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.836004 - 0.218271i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.836004 - 0.218271i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
good | 3 | \( 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 3T + 5T^{2} \) |
| 7 | \( 1 + (-2 - 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (-3.5 + 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 - 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7 + 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.11801567263195803439363895937, −14.51304520322972450289738422448, −12.86752542133299052893031973778, −12.13014409463477209152161257592, −11.13283845564273967027794116457, −8.932358985977772946319788991758, −8.028218456497603633589163853291, −7.06391108555236735802437630970, −4.89815905049700458481168744829, −2.57495322641041371625158816099,
3.76958376181139952163545686543, 4.54350086596736237636835442352, 7.29648802658163661817734164938, 8.230182993785509707012128489470, 9.748122364575163662300444350839, 10.86231622955014444559054444162, 11.89317232326513909860766786338, 13.56290443933123066594312249450, 14.86969352570688322322145549390, 15.26200544484071542123120556530