L(s) = 1 | + (0.366 − 1.36i)2-s + (−1.73 − i)4-s + (0.633 + 0.633i)5-s + (−2 + 1.99i)8-s + (−1.5 + 2.59i)9-s + (1.09 − 0.633i)10-s + (3.59 + 0.232i)13-s + (1.99 + 3.46i)16-s + (−6.86 − 3.96i)17-s + (3 + 3i)18-s + (−0.464 − 1.73i)20-s − 4.19i·25-s + (1.63 − 4.83i)26-s + (−3.33 − 5.76i)29-s + (5.46 − 1.46i)32-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.866 − 0.5i)4-s + (0.283 + 0.283i)5-s + (−0.707 + 0.707i)8-s + (−0.5 + 0.866i)9-s + (0.347 − 0.200i)10-s + (0.997 + 0.0643i)13-s + (0.499 + 0.866i)16-s + (−1.66 − 0.961i)17-s + (0.707 + 0.707i)18-s + (−0.103 − 0.387i)20-s − 0.839i·25-s + (0.320 − 0.947i)26-s + (−0.618 − 1.07i)29-s + (0.965 − 0.258i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.477 + 0.878i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.477 + 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.757964 - 0.450741i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.757964 - 0.450741i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 + 1.36i)T \) |
| 13 | \( 1 + (-3.59 - 0.232i)T \) |
good | 3 | \( 1 + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.633 - 0.633i)T + 5iT^{2} \) |
| 7 | \( 1 + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (6.86 + 3.96i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.33 + 5.76i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (-11.6 - 3.13i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (2.66 - 9.96i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 10.4T + 53T^{2} \) |
| 59 | \( 1 + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.69 - 4.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-9.83 + 9.83i)T - 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + (4.09 + 1.09i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (6.83 - 1.83i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.03459703779609310404345655658, −13.71138957338138956792450886787, −13.28050546797359662800217382804, −11.54926806610758296882055014005, −10.91328134438960859545061080082, −9.571858930860050498131620442129, −8.297346407402089548407318600183, −6.15454646270486005328547451229, −4.53358389757030762429745569301, −2.52657693685617399564981088391,
3.87521082344718984008305960188, 5.66641055851929360058606293608, 6.75443969258722335577912003593, 8.486054835856890677227479457762, 9.261965981035636758590460985983, 11.12057149536826258913955963587, 12.68520356602253402365644388898, 13.48281689196067280512821285553, 14.74989370126657612733207381925, 15.54878620892821321430718376387