L(s) = 1 | + (−0.526 + 1.31i)2-s + (2.16 + 1.25i)3-s + (−1.44 − 1.38i)4-s + (−2.19 − 2.19i)5-s + (−2.78 + 2.18i)6-s + (−0.152 + 0.569i)7-s + (2.57 − 1.16i)8-s + (1.63 + 2.83i)9-s + (4.04 − 1.72i)10-s + (−2.85 + 0.764i)11-s + (−1.40 − 4.80i)12-s + (2.37 − 2.71i)13-s + (−0.667 − 0.500i)14-s + (−2.01 − 7.52i)15-s + (0.179 + 3.99i)16-s + (−2.30 + 1.33i)17-s + ⋯ |
L(s) = 1 | + (−0.372 + 0.928i)2-s + (1.25 + 0.723i)3-s + (−0.722 − 0.691i)4-s + (−0.983 − 0.983i)5-s + (−1.13 + 0.893i)6-s + (−0.0576 + 0.215i)7-s + (0.910 − 0.413i)8-s + (0.546 + 0.946i)9-s + (1.27 − 0.546i)10-s + (−0.860 + 0.230i)11-s + (−0.405 − 1.38i)12-s + (0.657 − 0.753i)13-s + (−0.178 − 0.133i)14-s + (−0.520 − 1.94i)15-s + (0.0449 + 0.998i)16-s + (−0.560 + 0.323i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.396 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.688109 + 0.452459i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.688109 + 0.452459i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.526 - 1.31i)T \) |
| 13 | \( 1 + (-2.37 + 2.71i)T \) |
good | 3 | \( 1 + (-2.16 - 1.25i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (2.19 + 2.19i)T + 5iT^{2} \) |
| 7 | \( 1 + (0.152 - 0.569i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (2.85 - 0.764i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.30 - 1.33i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.11 - 0.835i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (1.03 - 1.78i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.621 - 1.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.34 - 6.34i)T - 31iT^{2} \) |
| 37 | \( 1 + (0.133 + 0.5i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-5.59 + 1.5i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (3.60 + 6.24i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.16 - 3.16i)T + 47iT^{2} \) |
| 53 | \( 1 - 3.67T + 53T^{2} \) |
| 59 | \( 1 + (-1.82 + 6.80i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (3.97 + 6.88i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.92 - 7.18i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-1.98 - 0.530i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.0440 + 0.0440i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.73iT - 79T^{2} \) |
| 83 | \( 1 + (-10.1 + 10.1i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2.14 - 8.01i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (1.22 - 4.58i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.76911369042123987095611222204, −15.00064008094007994302726448429, −13.74902425811294494307865445567, −12.64823231216606508618886116510, −10.59576910880828179547086758222, −9.234488243823770805419356174672, −8.446074000671785654891709169571, −7.64273346282807461895755750664, −5.25468222936889579894861396139, −3.83345855683635656007752329412,
2.57555361163562246479293078353, 3.81537264573178636856392011621, 7.21726432500879692583106424966, 8.004099666798507673025801503897, 9.183438406606072508903695021825, 10.76297947868636936510574432952, 11.68519828343756302238397691431, 13.14964908535024505624154558080, 13.85564227480798002665512605459, 14.99316516123861635990273209900