Properties

Label 2-520-1.1-c1-0-2
Degree $2$
Conductor $520$
Sign $1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·3-s − 5-s − 1.47·9-s + 5.23·11-s − 13-s + 1.23·15-s + 2·17-s + 5.23·19-s + 1.23·23-s + 25-s + 5.52·27-s − 0.472·29-s + 7.70·31-s − 6.47·33-s + 0.472·37-s + 1.23·39-s + 6.94·41-s + 1.23·43-s + 1.47·45-s − 4.94·47-s − 7·49-s − 2.47·51-s + 6.94·53-s − 5.23·55-s − 6.47·57-s + 7.70·59-s + 4.47·61-s + ⋯
L(s)  = 1  − 0.713·3-s − 0.447·5-s − 0.490·9-s + 1.57·11-s − 0.277·13-s + 0.319·15-s + 0.485·17-s + 1.20·19-s + 0.257·23-s + 0.200·25-s + 1.06·27-s − 0.0876·29-s + 1.38·31-s − 1.12·33-s + 0.0776·37-s + 0.197·39-s + 1.08·41-s + 0.188·43-s + 0.219·45-s − 0.721·47-s − 49-s − 0.346·51-s + 0.953·53-s − 0.706·55-s − 0.857·57-s + 1.00·59-s + 0.572·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.079507700\)
\(L(\frac12)\) \(\approx\) \(1.079507700\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 + 1.23T + 3T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 - 5.23T + 11T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 5.23T + 19T^{2} \)
23 \( 1 - 1.23T + 23T^{2} \)
29 \( 1 + 0.472T + 29T^{2} \)
31 \( 1 - 7.70T + 31T^{2} \)
37 \( 1 - 0.472T + 37T^{2} \)
41 \( 1 - 6.94T + 41T^{2} \)
43 \( 1 - 1.23T + 43T^{2} \)
47 \( 1 + 4.94T + 47T^{2} \)
53 \( 1 - 6.94T + 53T^{2} \)
59 \( 1 - 7.70T + 59T^{2} \)
61 \( 1 - 4.47T + 61T^{2} \)
67 \( 1 - 1.52T + 67T^{2} \)
71 \( 1 + 5.23T + 71T^{2} \)
73 \( 1 + 16.4T + 73T^{2} \)
79 \( 1 + 2.47T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.12951574925593938543374835261, −9.999785734386787146458714838782, −9.162217464044415556471179323061, −8.192157076782164240718754090039, −7.10972410829731160032125077882, −6.26429252151906941391582673532, −5.30818460703614388109561460911, −4.20943309108429795598214803603, −3.02971160706151924177536074890, −1.02731907916227138323289547118, 1.02731907916227138323289547118, 3.02971160706151924177536074890, 4.20943309108429795598214803603, 5.30818460703614388109561460911, 6.26429252151906941391582673532, 7.10972410829731160032125077882, 8.192157076782164240718754090039, 9.162217464044415556471179323061, 9.999785734386787146458714838782, 11.12951574925593938543374835261

Graph of the $Z$-function along the critical line