L(s) = 1 | + 2·3-s + 5-s + 9-s + 2·11-s + 13-s + 2·15-s + 2·17-s + 2·19-s + 2·23-s + 25-s − 4·27-s − 6·29-s + 2·31-s + 4·33-s − 6·37-s + 2·39-s + 2·41-s + 6·43-s + 45-s − 8·47-s − 7·49-s + 4·51-s − 2·53-s + 2·55-s + 4·57-s + 6·59-s − 14·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.447·5-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.516·15-s + 0.485·17-s + 0.458·19-s + 0.417·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s + 0.359·31-s + 0.696·33-s − 0.986·37-s + 0.320·39-s + 0.312·41-s + 0.914·43-s + 0.149·45-s − 1.16·47-s − 49-s + 0.560·51-s − 0.274·53-s + 0.269·55-s + 0.529·57-s + 0.781·59-s − 1.79·61-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.250708052 |
L(21) |
≈ |
2.250708052 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 13 | 1−T |
good | 3 | 1−2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−2T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79950190094570685551190656629, −9.649255989280370161329944895610, −9.185441066298600697822669255631, −8.282388148593036711889740506020, −7.44095337164983387150060505996, −6.33588991532526860429499225622, −5.24172374409154567149889570954, −3.83609522350488929158971696987, −2.93871105322865322021254198939, −1.63546887865200897104772810976,
1.63546887865200897104772810976, 2.93871105322865322021254198939, 3.83609522350488929158971696987, 5.24172374409154567149889570954, 6.33588991532526860429499225622, 7.44095337164983387150060505996, 8.282388148593036711889740506020, 9.185441066298600697822669255631, 9.649255989280370161329944895610, 10.79950190094570685551190656629