Properties

Label 2-520-1.1-c1-0-4
Degree $2$
Conductor $520$
Sign $1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 9-s + 2·11-s + 13-s + 2·15-s + 2·17-s + 2·19-s + 2·23-s + 25-s − 4·27-s − 6·29-s + 2·31-s + 4·33-s − 6·37-s + 2·39-s + 2·41-s + 6·43-s + 45-s − 8·47-s − 7·49-s + 4·51-s − 2·53-s + 2·55-s + 4·57-s + 6·59-s − 14·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1/3·9-s + 0.603·11-s + 0.277·13-s + 0.516·15-s + 0.485·17-s + 0.458·19-s + 0.417·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s + 0.359·31-s + 0.696·33-s − 0.986·37-s + 0.320·39-s + 0.312·41-s + 0.914·43-s + 0.149·45-s − 1.16·47-s − 49-s + 0.560·51-s − 0.274·53-s + 0.269·55-s + 0.529·57-s + 0.781·59-s − 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.250708052\)
\(L(\frac12)\) \(\approx\) \(2.250708052\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79950190094570685551190656629, −9.649255989280370161329944895610, −9.185441066298600697822669255631, −8.282388148593036711889740506020, −7.44095337164983387150060505996, −6.33588991532526860429499225622, −5.24172374409154567149889570954, −3.83609522350488929158971696987, −2.93871105322865322021254198939, −1.63546887865200897104772810976, 1.63546887865200897104772810976, 2.93871105322865322021254198939, 3.83609522350488929158971696987, 5.24172374409154567149889570954, 6.33588991532526860429499225622, 7.44095337164983387150060505996, 8.282388148593036711889740506020, 9.185441066298600697822669255631, 9.649255989280370161329944895610, 10.79950190094570685551190656629

Graph of the $Z$-function along the critical line