L(s) = 1 | + (0.164 + 1.40i)2-s + (1.79 − 1.03i)3-s + (−1.94 + 0.462i)4-s − 5-s + (1.75 + 2.35i)6-s + (3.65 + 2.10i)7-s + (−0.969 − 2.65i)8-s + (0.658 − 1.14i)9-s + (−0.164 − 1.40i)10-s + (2.34 + 4.05i)11-s + (−3.02 + 2.85i)12-s + (−3.60 − 0.189i)13-s + (−2.36 + 5.48i)14-s + (−1.79 + 1.03i)15-s + (3.57 − 1.79i)16-s + (1.44 − 2.49i)17-s + ⋯ |
L(s) = 1 | + (0.116 + 0.993i)2-s + (1.03 − 0.599i)3-s + (−0.972 + 0.231i)4-s − 0.447·5-s + (0.716 + 0.961i)6-s + (1.38 + 0.797i)7-s + (−0.342 − 0.939i)8-s + (0.219 − 0.380i)9-s + (−0.0520 − 0.444i)10-s + (0.705 + 1.22i)11-s + (−0.872 + 0.823i)12-s + (−0.998 − 0.0524i)13-s + (−0.631 + 1.46i)14-s + (−0.464 + 0.268i)15-s + (0.893 − 0.449i)16-s + (0.349 − 0.605i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(0.236−0.971i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(0.236−0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
0.236−0.971i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), 0.236−0.971i)
|
Particular Values
L(1) |
≈ |
1.58069+1.24169i |
L(21) |
≈ |
1.58069+1.24169i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.164−1.40i)T |
| 5 | 1+T |
| 13 | 1+(3.60+0.189i)T |
good | 3 | 1+(−1.79+1.03i)T+(1.5−2.59i)T2 |
| 7 | 1+(−3.65−2.10i)T+(3.5+6.06i)T2 |
| 11 | 1+(−2.34−4.05i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.44+2.49i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.09+5.36i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.36−5.82i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.64−2.68i)T+(14.5−25.1i)T2 |
| 31 | 1+0.540iT−31T2 |
| 37 | 1+(−0.815−1.41i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.36+0.789i)T+(20.5−35.5i)T2 |
| 43 | 1+(4.99+2.88i)T+(21.5+37.2i)T2 |
| 47 | 1−4.24iT−47T2 |
| 53 | 1+10.7iT−53T2 |
| 59 | 1+(−6.90+11.9i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.45+3.72i)T+(30.5+52.8i)T2 |
| 67 | 1+(5.52+9.57i)T+(−33.5+58.0i)T2 |
| 71 | 1+(8.93+5.15i)T+(35.5+61.4i)T2 |
| 73 | 1+8.13iT−73T2 |
| 79 | 1−1.61T+79T2 |
| 83 | 1+3.34T+83T2 |
| 89 | 1+(2.76−1.59i)T+(44.5−77.0i)T2 |
| 97 | 1+(12.2+7.09i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.34812029996598968280292939024, −9.520449079200257559271561267291, −9.128312819851898963906718324157, −8.125426306612772650557729042919, −7.43653995082466444645552968475, −7.03685339576331675369178819396, −5.21862668094379599661123532025, −4.76626397580538026480148602963, −3.19450128928234869027592457659, −1.79368889650067509760944600728,
1.24682084709249682841399040398, 2.81105654334428395697052199666, 3.87137323456400241489416727013, 4.39284365101256594036722447381, 5.66834811119193258009147688515, 7.53835656986924000920804129674, 8.325656035545938346213757016640, 8.878885258517545813702322271973, 9.963068225141115831296842798094, 10.63915080192071895087921246010