Properties

Label 2-520-104.69-c1-0-40
Degree 22
Conductor 520520
Sign 0.393+0.919i-0.393 + 0.919i
Analytic cond. 4.152224.15222
Root an. cond. 2.037692.03769
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.37 + 0.314i)2-s + (1.00 + 0.580i)3-s + (1.80 − 0.866i)4-s − 5-s + (−1.56 − 0.484i)6-s + (−2.74 + 1.58i)7-s + (−2.21 + 1.76i)8-s + (−0.826 − 1.43i)9-s + (1.37 − 0.314i)10-s + (1.23 − 2.13i)11-s + (2.31 + 0.175i)12-s + (−3.60 − 0.150i)13-s + (3.28 − 3.04i)14-s + (−1.00 − 0.580i)15-s + (2.49 − 3.12i)16-s + (0.369 + 0.639i)17-s + ⋯
L(s)  = 1  + (−0.975 + 0.222i)2-s + (0.580 + 0.335i)3-s + (0.901 − 0.433i)4-s − 0.447·5-s + (−0.640 − 0.197i)6-s + (−1.03 + 0.598i)7-s + (−0.782 + 0.622i)8-s + (−0.275 − 0.477i)9-s + (0.436 − 0.0993i)10-s + (0.371 − 0.643i)11-s + (0.668 + 0.0506i)12-s + (−0.999 − 0.0416i)13-s + (0.877 − 0.813i)14-s + (−0.259 − 0.149i)15-s + (0.624 − 0.780i)16-s + (0.0895 + 0.155i)17-s + ⋯

Functional equation

Λ(s)=(520s/2ΓC(s)L(s)=((0.393+0.919i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.393 + 0.919i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(520s/2ΓC(s+1/2)L(s)=((0.393+0.919i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.393 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 520520    =    235132^{3} \cdot 5 \cdot 13
Sign: 0.393+0.919i-0.393 + 0.919i
Analytic conductor: 4.152224.15222
Root analytic conductor: 2.037692.03769
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ520(381,)\chi_{520} (381, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 520, ( :1/2), 0.393+0.919i)(2,\ 520,\ (\ :1/2),\ -0.393 + 0.919i)

Particular Values

L(1)L(1) \approx 0.1886120.285840i0.188612 - 0.285840i
L(12)L(\frac12) \approx 0.1886120.285840i0.188612 - 0.285840i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.370.314i)T 1 + (1.37 - 0.314i)T
5 1+T 1 + T
13 1+(3.60+0.150i)T 1 + (3.60 + 0.150i)T
good3 1+(1.000.580i)T+(1.5+2.59i)T2 1 + (-1.00 - 0.580i)T + (1.5 + 2.59i)T^{2}
7 1+(2.741.58i)T+(3.56.06i)T2 1 + (2.74 - 1.58i)T + (3.5 - 6.06i)T^{2}
11 1+(1.23+2.13i)T+(5.59.52i)T2 1 + (-1.23 + 2.13i)T + (-5.5 - 9.52i)T^{2}
17 1+(0.3690.639i)T+(8.5+14.7i)T2 1 + (-0.369 - 0.639i)T + (-8.5 + 14.7i)T^{2}
19 1+(4.31+7.47i)T+(9.5+16.4i)T2 1 + (4.31 + 7.47i)T + (-9.5 + 16.4i)T^{2}
23 1+(2.88+4.99i)T+(11.519.9i)T2 1 + (-2.88 + 4.99i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.59+0.919i)T+(14.5+25.1i)T2 1 + (1.59 + 0.919i)T + (14.5 + 25.1i)T^{2}
31 19.05iT31T2 1 - 9.05iT - 31T^{2}
37 1+(1.352.35i)T+(18.532.0i)T2 1 + (1.35 - 2.35i)T + (-18.5 - 32.0i)T^{2}
41 1+(0.1650.0952i)T+(20.5+35.5i)T2 1 + (-0.165 - 0.0952i)T + (20.5 + 35.5i)T^{2}
43 1+(7.434.29i)T+(21.537.2i)T2 1 + (7.43 - 4.29i)T + (21.5 - 37.2i)T^{2}
47 1+8.23iT47T2 1 + 8.23iT - 47T^{2}
53 1+4.18iT53T2 1 + 4.18iT - 53T^{2}
59 1+(5.72+9.91i)T+(29.5+51.0i)T2 1 + (5.72 + 9.91i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.03+2.32i)T+(30.552.8i)T2 1 + (-4.03 + 2.32i)T + (30.5 - 52.8i)T^{2}
67 1+(1.66+2.88i)T+(33.558.0i)T2 1 + (-1.66 + 2.88i)T + (-33.5 - 58.0i)T^{2}
71 1+(3.241.87i)T+(35.561.4i)T2 1 + (3.24 - 1.87i)T + (35.5 - 61.4i)T^{2}
73 11.03iT73T2 1 - 1.03iT - 73T^{2}
79 1+9.18T+79T2 1 + 9.18T + 79T^{2}
83 1+1.79T+83T2 1 + 1.79T + 83T^{2}
89 1+(12.17.04i)T+(44.5+77.0i)T2 1 + (-12.1 - 7.04i)T + (44.5 + 77.0i)T^{2}
97 1+(14.88.56i)T+(48.584.0i)T2 1 + (14.8 - 8.56i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.34537044642805908278720904578, −9.453817875088727568639757195770, −8.843466854780396349829276609671, −8.311065559549145556198772687718, −6.83412052557288632239747765068, −6.46331723404372444381385200953, −4.99614085578644346882732364950, −3.32347536429935554109786659883, −2.57988806567746090943293200224, −0.23850039913141593039634511011, 1.81947966037899846799081034255, 3.03836663231841410039581612260, 4.08270555067138177090724052583, 5.90666351496517936681506198735, 7.15886690345862332931027653983, 7.51537772525961006027860131916, 8.459086991544363711731775308859, 9.490231794023385946913093569860, 10.04012227086343411267584201556, 10.96051751544935980408365514137

Graph of the ZZ-function along the critical line