L(s) = 1 | + (−1.37 + 0.314i)2-s + (1.00 + 0.580i)3-s + (1.80 − 0.866i)4-s − 5-s + (−1.56 − 0.484i)6-s + (−2.74 + 1.58i)7-s + (−2.21 + 1.76i)8-s + (−0.826 − 1.43i)9-s + (1.37 − 0.314i)10-s + (1.23 − 2.13i)11-s + (2.31 + 0.175i)12-s + (−3.60 − 0.150i)13-s + (3.28 − 3.04i)14-s + (−1.00 − 0.580i)15-s + (2.49 − 3.12i)16-s + (0.369 + 0.639i)17-s + ⋯ |
L(s) = 1 | + (−0.975 + 0.222i)2-s + (0.580 + 0.335i)3-s + (0.901 − 0.433i)4-s − 0.447·5-s + (−0.640 − 0.197i)6-s + (−1.03 + 0.598i)7-s + (−0.782 + 0.622i)8-s + (−0.275 − 0.477i)9-s + (0.436 − 0.0993i)10-s + (0.371 − 0.643i)11-s + (0.668 + 0.0506i)12-s + (−0.999 − 0.0416i)13-s + (0.877 − 0.813i)14-s + (−0.259 − 0.149i)15-s + (0.624 − 0.780i)16-s + (0.0895 + 0.155i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.393 + 0.919i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.393 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.188612 - 0.285840i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.188612 - 0.285840i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 - 0.314i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (3.60 + 0.150i)T \) |
good | 3 | \( 1 + (-1.00 - 0.580i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (2.74 - 1.58i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.23 + 2.13i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.369 - 0.639i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.31 + 7.47i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.88 + 4.99i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.59 + 0.919i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 9.05iT - 31T^{2} \) |
| 37 | \( 1 + (1.35 - 2.35i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.165 - 0.0952i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (7.43 - 4.29i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8.23iT - 47T^{2} \) |
| 53 | \( 1 + 4.18iT - 53T^{2} \) |
| 59 | \( 1 + (5.72 + 9.91i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.03 + 2.32i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.66 + 2.88i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.24 - 1.87i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.03iT - 73T^{2} \) |
| 79 | \( 1 + 9.18T + 79T^{2} \) |
| 83 | \( 1 + 1.79T + 83T^{2} \) |
| 89 | \( 1 + (-12.1 - 7.04i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (14.8 - 8.56i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34537044642805908278720904578, −9.453817875088727568639757195770, −8.843466854780396349829276609671, −8.311065559549145556198772687718, −6.83412052557288632239747765068, −6.46331723404372444381385200953, −4.99614085578644346882732364950, −3.32347536429935554109786659883, −2.57988806567746090943293200224, −0.23850039913141593039634511011,
1.81947966037899846799081034255, 3.03836663231841410039581612260, 4.08270555067138177090724052583, 5.90666351496517936681506198735, 7.15886690345862332931027653983, 7.51537772525961006027860131916, 8.459086991544363711731775308859, 9.490231794023385946913093569860, 10.04012227086343411267584201556, 10.96051751544935980408365514137