L(s) = 1 | + (0.449 − 1.34i)2-s + (−0.700 − 0.404i)3-s + (−1.59 − 1.20i)4-s + 5-s + (−0.856 + 0.757i)6-s + (3.38 − 1.95i)7-s + (−2.33 + 1.59i)8-s + (−1.17 − 2.03i)9-s + (0.449 − 1.34i)10-s + (0.223 − 0.387i)11-s + (0.630 + 1.48i)12-s + (3.01 + 1.98i)13-s + (−1.09 − 5.41i)14-s + (−0.700 − 0.404i)15-s + (1.09 + 3.84i)16-s + (−4.00 − 6.94i)17-s + ⋯ |
L(s) = 1 | + (0.317 − 0.948i)2-s + (−0.404 − 0.233i)3-s + (−0.798 − 0.602i)4-s + 0.447·5-s + (−0.349 + 0.309i)6-s + (1.27 − 0.737i)7-s + (−0.824 + 0.565i)8-s + (−0.390 − 0.677i)9-s + (0.142 − 0.424i)10-s + (0.0674 − 0.116i)11-s + (0.182 + 0.429i)12-s + (0.835 + 0.550i)13-s + (−0.293 − 1.44i)14-s + (−0.180 − 0.104i)15-s + (0.273 + 0.961i)16-s + (−0.972 − 1.68i)17-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)(−0.850+0.526i)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)(−0.850+0.526i)Λ(1−s)
Degree: |
2 |
Conductor: |
520
= 23⋅5⋅13
|
Sign: |
−0.850+0.526i
|
Analytic conductor: |
4.15222 |
Root analytic conductor: |
2.03769 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ520(381,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 520, ( :1/2), −0.850+0.526i)
|
Particular Values
L(1) |
≈ |
0.406268−1.42736i |
L(21) |
≈ |
0.406268−1.42736i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.449+1.34i)T |
| 5 | 1−T |
| 13 | 1+(−3.01−1.98i)T |
good | 3 | 1+(0.700+0.404i)T+(1.5+2.59i)T2 |
| 7 | 1+(−3.38+1.95i)T+(3.5−6.06i)T2 |
| 11 | 1+(−0.223+0.387i)T+(−5.5−9.52i)T2 |
| 17 | 1+(4.00+6.94i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.861−1.49i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.570−0.987i)T+(−11.5−19.9i)T2 |
| 29 | 1+(8.04+4.64i)T+(14.5+25.1i)T2 |
| 31 | 1+5.19iT−31T2 |
| 37 | 1+(2.59−4.49i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−4.37−2.52i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.587−0.339i)T+(21.5−37.2i)T2 |
| 47 | 1−8.71iT−47T2 |
| 53 | 1+11.8iT−53T2 |
| 59 | 1+(−4.67−8.08i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−6.84+3.95i)T+(30.5−52.8i)T2 |
| 67 | 1+(5.35−9.28i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−9.05+5.22i)T+(35.5−61.4i)T2 |
| 73 | 1−0.118iT−73T2 |
| 79 | 1−17.2T+79T2 |
| 83 | 1−10.1T+83T2 |
| 89 | 1+(−7.70−4.44i)T+(44.5+77.0i)T2 |
| 97 | 1+(−7.84+4.52i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94671515376808560644501072658, −9.661566666385859381020768194529, −9.053263850280276473761200449926, −7.916168206851739271119249442882, −6.64633131884868080016245209106, −5.64016587718895696627965118191, −4.68601647704830538481444674444, −3.69686841973136872811935162061, −2.13706024994443305806635067001, −0.886018413335328616178113363619,
2.03841056984391073905833425911, 3.83180120909163815780607157285, 5.04988890038525012336811849780, 5.54067718806699804390222925432, 6.42015801392699476507963958212, 7.72223585715391145386775750754, 8.527325990256431158173273499073, 9.021851038859528271989053435685, 10.60450468880456106804538680651, 11.06392982184148163950531488731