L(s) = 1 | + (0.449 − 1.34i)2-s + (−0.700 − 0.404i)3-s + (−1.59 − 1.20i)4-s + 5-s + (−0.856 + 0.757i)6-s + (3.38 − 1.95i)7-s + (−2.33 + 1.59i)8-s + (−1.17 − 2.03i)9-s + (0.449 − 1.34i)10-s + (0.223 − 0.387i)11-s + (0.630 + 1.48i)12-s + (3.01 + 1.98i)13-s + (−1.09 − 5.41i)14-s + (−0.700 − 0.404i)15-s + (1.09 + 3.84i)16-s + (−4.00 − 6.94i)17-s + ⋯ |
L(s) = 1 | + (0.317 − 0.948i)2-s + (−0.404 − 0.233i)3-s + (−0.798 − 0.602i)4-s + 0.447·5-s + (−0.349 + 0.309i)6-s + (1.27 − 0.737i)7-s + (−0.824 + 0.565i)8-s + (−0.390 − 0.677i)9-s + (0.142 − 0.424i)10-s + (0.0674 − 0.116i)11-s + (0.182 + 0.429i)12-s + (0.835 + 0.550i)13-s + (−0.293 − 1.44i)14-s + (−0.180 − 0.104i)15-s + (0.273 + 0.961i)16-s + (−0.972 − 1.68i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.526i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 + 0.526i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.406268 - 1.42736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.406268 - 1.42736i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.449 + 1.34i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (-3.01 - 1.98i)T \) |
good | 3 | \( 1 + (0.700 + 0.404i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-3.38 + 1.95i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.223 + 0.387i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (4.00 + 6.94i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.861 - 1.49i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.570 - 0.987i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (8.04 + 4.64i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.19iT - 31T^{2} \) |
| 37 | \( 1 + (2.59 - 4.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.37 - 2.52i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.587 - 0.339i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 8.71iT - 47T^{2} \) |
| 53 | \( 1 + 11.8iT - 53T^{2} \) |
| 59 | \( 1 + (-4.67 - 8.08i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.84 + 3.95i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.35 - 9.28i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-9.05 + 5.22i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 0.118iT - 73T^{2} \) |
| 79 | \( 1 - 17.2T + 79T^{2} \) |
| 83 | \( 1 - 10.1T + 83T^{2} \) |
| 89 | \( 1 + (-7.70 - 4.44i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.84 + 4.52i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94671515376808560644501072658, −9.661566666385859381020768194529, −9.053263850280276473761200449926, −7.916168206851739271119249442882, −6.64633131884868080016245209106, −5.64016587718895696627965118191, −4.68601647704830538481444674444, −3.69686841973136872811935162061, −2.13706024994443305806635067001, −0.886018413335328616178113363619,
2.03841056984391073905833425911, 3.83180120909163815780607157285, 5.04988890038525012336811849780, 5.54067718806699804390222925432, 6.42015801392699476507963958212, 7.72223585715391145386775750754, 8.527325990256431158173273499073, 9.021851038859528271989053435685, 10.60450468880456106804538680651, 11.06392982184148163950531488731