Properties

Label 2-5220-1.1-c1-0-37
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 1.32·7-s − 5.32·11-s − 5.02·13-s + 6.34·17-s − 4.34·19-s + 1.70·23-s + 25-s + 29-s + 8.34·31-s + 1.32·35-s − 6.93·37-s + 1.02·41-s + 10.7·43-s + 0.679·47-s − 5.25·49-s − 2.38·53-s − 5.32·55-s − 10.4·59-s − 6.38·61-s − 5.02·65-s − 5.70·67-s + 3.61·71-s − 6.73·73-s − 7.02·77-s − 11.3·79-s + 3.96·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.499·7-s − 1.60·11-s − 1.39·13-s + 1.53·17-s − 0.997·19-s + 0.356·23-s + 0.200·25-s + 0.185·29-s + 1.49·31-s + 0.223·35-s − 1.14·37-s + 0.160·41-s + 1.63·43-s + 0.0990·47-s − 0.750·49-s − 0.327·53-s − 0.717·55-s − 1.35·59-s − 0.817·61-s − 0.623·65-s − 0.697·67-s + 0.428·71-s − 0.788·73-s − 0.800·77-s − 1.28·79-s + 0.434·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good7 \( 1 - 1.32T + 7T^{2} \)
11 \( 1 + 5.32T + 11T^{2} \)
13 \( 1 + 5.02T + 13T^{2} \)
17 \( 1 - 6.34T + 17T^{2} \)
19 \( 1 + 4.34T + 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
31 \( 1 - 8.34T + 31T^{2} \)
37 \( 1 + 6.93T + 37T^{2} \)
41 \( 1 - 1.02T + 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 - 0.679T + 47T^{2} \)
53 \( 1 + 2.38T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 6.38T + 61T^{2} \)
67 \( 1 + 5.70T + 67T^{2} \)
71 \( 1 - 3.61T + 71T^{2} \)
73 \( 1 + 6.73T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 3.96T + 83T^{2} \)
89 \( 1 + 2.58T + 89T^{2} \)
97 \( 1 + 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79726546313300968099328794911, −7.35118778127331763399440308823, −6.34785680134332272186749732621, −5.51592119291581419662411843173, −5.01405023583652197521142122963, −4.34484038441904270340928245055, −2.95193618032618234049668460411, −2.54456662855585889951573625539, −1.42096228406856806185233043419, 0, 1.42096228406856806185233043419, 2.54456662855585889951573625539, 2.95193618032618234049668460411, 4.34484038441904270340928245055, 5.01405023583652197521142122963, 5.51592119291581419662411843173, 6.34785680134332272186749732621, 7.35118778127331763399440308823, 7.79726546313300968099328794911

Graph of the $Z$-function along the critical line