L(s) = 1 | + 5-s + 1.32·7-s − 5.32·11-s − 5.02·13-s + 6.34·17-s − 4.34·19-s + 1.70·23-s + 25-s + 29-s + 8.34·31-s + 1.32·35-s − 6.93·37-s + 1.02·41-s + 10.7·43-s + 0.679·47-s − 5.25·49-s − 2.38·53-s − 5.32·55-s − 10.4·59-s − 6.38·61-s − 5.02·65-s − 5.70·67-s + 3.61·71-s − 6.73·73-s − 7.02·77-s − 11.3·79-s + 3.96·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.499·7-s − 1.60·11-s − 1.39·13-s + 1.53·17-s − 0.997·19-s + 0.356·23-s + 0.200·25-s + 0.185·29-s + 1.49·31-s + 0.223·35-s − 1.14·37-s + 0.160·41-s + 1.63·43-s + 0.0990·47-s − 0.750·49-s − 0.327·53-s − 0.717·55-s − 1.35·59-s − 0.817·61-s − 0.623·65-s − 0.697·67-s + 0.428·71-s − 0.788·73-s − 0.800·77-s − 1.28·79-s + 0.434·83-s + ⋯ |
Λ(s)=(=(5220s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5220s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 7 | 1−1.32T+7T2 |
| 11 | 1+5.32T+11T2 |
| 13 | 1+5.02T+13T2 |
| 17 | 1−6.34T+17T2 |
| 19 | 1+4.34T+19T2 |
| 23 | 1−1.70T+23T2 |
| 31 | 1−8.34T+31T2 |
| 37 | 1+6.93T+37T2 |
| 41 | 1−1.02T+41T2 |
| 43 | 1−10.7T+43T2 |
| 47 | 1−0.679T+47T2 |
| 53 | 1+2.38T+53T2 |
| 59 | 1+10.4T+59T2 |
| 61 | 1+6.38T+61T2 |
| 67 | 1+5.70T+67T2 |
| 71 | 1−3.61T+71T2 |
| 73 | 1+6.73T+73T2 |
| 79 | 1+11.3T+79T2 |
| 83 | 1−3.96T+83T2 |
| 89 | 1+2.58T+89T2 |
| 97 | 1+15.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.79726546313300968099328794911, −7.35118778127331763399440308823, −6.34785680134332272186749732621, −5.51592119291581419662411843173, −5.01405023583652197521142122963, −4.34484038441904270340928245055, −2.95193618032618234049668460411, −2.54456662855585889951573625539, −1.42096228406856806185233043419, 0,
1.42096228406856806185233043419, 2.54456662855585889951573625539, 2.95193618032618234049668460411, 4.34484038441904270340928245055, 5.01405023583652197521142122963, 5.51592119291581419662411843173, 6.34785680134332272186749732621, 7.35118778127331763399440308823, 7.79726546313300968099328794911