Properties

Label 2-5220-1.1-c1-0-46
Degree $2$
Conductor $5220$
Sign $-1$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 3.56·7-s − 4.12·11-s − 0.438·13-s − 5.56·17-s − 2·19-s + 3.68·23-s + 25-s + 29-s − 6.24·31-s + 3.56·35-s − 2.56·37-s − 9.68·41-s − 1.43·43-s − 8.43·47-s + 5.68·49-s + 0.561·53-s − 4.12·55-s − 7.12·59-s − 0.438·65-s + 10.6·67-s − 9.12·71-s − 1.43·73-s − 14.6·77-s − 7.12·79-s − 2.31·83-s − 5.56·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.34·7-s − 1.24·11-s − 0.121·13-s − 1.34·17-s − 0.458·19-s + 0.768·23-s + 0.200·25-s + 0.185·29-s − 1.12·31-s + 0.602·35-s − 0.421·37-s − 1.51·41-s − 0.219·43-s − 1.23·47-s + 0.812·49-s + 0.0771·53-s − 0.555·55-s − 0.927·59-s − 0.0543·65-s + 1.30·67-s − 1.08·71-s − 0.168·73-s − 1.67·77-s − 0.801·79-s − 0.254·83-s − 0.603·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 + 4.12T + 11T^{2} \)
13 \( 1 + 0.438T + 13T^{2} \)
17 \( 1 + 5.56T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 3.68T + 23T^{2} \)
31 \( 1 + 6.24T + 31T^{2} \)
37 \( 1 + 2.56T + 37T^{2} \)
41 \( 1 + 9.68T + 41T^{2} \)
43 \( 1 + 1.43T + 43T^{2} \)
47 \( 1 + 8.43T + 47T^{2} \)
53 \( 1 - 0.561T + 53T^{2} \)
59 \( 1 + 7.12T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 10.6T + 67T^{2} \)
71 \( 1 + 9.12T + 71T^{2} \)
73 \( 1 + 1.43T + 73T^{2} \)
79 \( 1 + 7.12T + 79T^{2} \)
83 \( 1 + 2.31T + 83T^{2} \)
89 \( 1 + 1.31T + 89T^{2} \)
97 \( 1 - 2.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.935906779082870074216165508975, −7.15708625530888481602332554621, −6.48316586932269897294595578719, −5.42649586793818752817099810243, −4.99927098344645251721897683074, −4.36669112208241663861371499849, −3.15805223871441721361209348289, −2.21031554846628694386124218605, −1.59607646953145367989932721272, 0, 1.59607646953145367989932721272, 2.21031554846628694386124218605, 3.15805223871441721361209348289, 4.36669112208241663861371499849, 4.99927098344645251721897683074, 5.42649586793818752817099810243, 6.48316586932269897294595578719, 7.15708625530888481602332554621, 7.935906779082870074216165508975

Graph of the $Z$-function along the critical line