Properties

Label 2-5220-145.144-c1-0-0
Degree $2$
Conductor $5220$
Sign $-0.944 + 0.329i$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.14 + 0.620i)5-s + 1.65i·7-s − 4.14i·11-s + 5.20i·13-s + 2.42·17-s − 3.22i·19-s + 8.09i·23-s + (4.22 − 2.66i)25-s + (−5.37 + 0.292i)29-s − 8.43i·31-s + (−1.02 − 3.54i)35-s − 9.87·37-s + 10.7i·41-s − 2.24·43-s + 5.20·47-s + ⋯
L(s)  = 1  + (−0.960 + 0.277i)5-s + 0.624i·7-s − 1.25i·11-s + 1.44i·13-s + 0.587·17-s − 0.740i·19-s + 1.68i·23-s + (0.845 − 0.533i)25-s + (−0.998 + 0.0542i)29-s − 1.51i·31-s + (−0.173 − 0.599i)35-s − 1.62·37-s + 1.67i·41-s − 0.341·43-s + 0.759·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-0.944 + 0.329i$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5220} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -0.944 + 0.329i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1392880791\)
\(L(\frac12)\) \(\approx\) \(0.1392880791\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (2.14 - 0.620i)T \)
29 \( 1 + (5.37 - 0.292i)T \)
good7 \( 1 - 1.65iT - 7T^{2} \)
11 \( 1 + 4.14iT - 11T^{2} \)
13 \( 1 - 5.20iT - 13T^{2} \)
17 \( 1 - 2.42T + 17T^{2} \)
19 \( 1 + 3.22iT - 19T^{2} \)
23 \( 1 - 8.09iT - 23T^{2} \)
31 \( 1 + 8.43iT - 31T^{2} \)
37 \( 1 + 9.87T + 37T^{2} \)
41 \( 1 - 10.7iT - 41T^{2} \)
43 \( 1 + 2.24T + 43T^{2} \)
47 \( 1 - 5.20T + 47T^{2} \)
53 \( 1 - 4.67iT - 53T^{2} \)
59 \( 1 + 5.43T + 59T^{2} \)
61 \( 1 - 10.1iT - 61T^{2} \)
67 \( 1 + 1.51iT - 67T^{2} \)
71 \( 1 - 7.48T + 71T^{2} \)
73 \( 1 - 7.38T + 73T^{2} \)
79 \( 1 + 5.98iT - 79T^{2} \)
83 \( 1 + 5.74iT - 83T^{2} \)
89 \( 1 + 16.2iT - 89T^{2} \)
97 \( 1 - 4.90T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.726951255819679862503938670672, −7.74563696439392477138896459335, −7.34791849675123345590326442619, −6.42081436263675471571975953989, −5.77386802042044168766216545622, −4.96671437481827405453188238826, −3.98083221372595723505037767354, −3.44228632238062867929948089128, −2.55332059730179480634098287716, −1.37865505096975023422311865291, 0.04159787598220656364594882727, 1.12760405110050423856871020320, 2.33901762585304742042454920435, 3.53716144325895339744642936626, 3.88860760434203111819328972299, 4.99327751235199923186926575952, 5.32301528715297670646218837901, 6.61637698088803811296569205740, 7.19468320028616740790389406993, 7.80158866259272508486498650557

Graph of the $Z$-function along the critical line