L(s) = 1 | + (−0.591 + 2.15i)5-s + 2.69i·7-s − 0.968i·11-s − 2.99i·13-s − 1.02·17-s + 7.89i·19-s − 0.0832i·23-s + (−4.29 − 2.55i)25-s + (−4.28 − 3.25i)29-s + 2.02i·31-s + (−5.81 − 1.59i)35-s + 3.06·37-s + 3.92i·41-s − 7.15·43-s + 0.554·47-s + ⋯ |
L(s) = 1 | + (−0.264 + 0.964i)5-s + 1.01i·7-s − 0.291i·11-s − 0.831i·13-s − 0.249·17-s + 1.81i·19-s − 0.0173i·23-s + (−0.859 − 0.510i)25-s + (−0.796 − 0.604i)29-s + 0.363i·31-s + (−0.983 − 0.269i)35-s + 0.503·37-s + 0.613i·41-s − 1.09·43-s + 0.0808·47-s + ⋯ |
Λ(s)=(=(5220s/2ΓC(s)L(s)(−0.794+0.607i)Λ(2−s)
Λ(s)=(=(5220s/2ΓC(s+1/2)L(s)(−0.794+0.607i)Λ(1−s)
Degree: |
2 |
Conductor: |
5220
= 22⋅32⋅5⋅29
|
Sign: |
−0.794+0.607i
|
Analytic conductor: |
41.6819 |
Root analytic conductor: |
6.45615 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5220(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5220, ( :1/2), −0.794+0.607i)
|
Particular Values
L(1) |
≈ |
0.3359883719 |
L(21) |
≈ |
0.3359883719 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.591−2.15i)T |
| 29 | 1+(4.28+3.25i)T |
good | 7 | 1−2.69iT−7T2 |
| 11 | 1+0.968iT−11T2 |
| 13 | 1+2.99iT−13T2 |
| 17 | 1+1.02T+17T2 |
| 19 | 1−7.89iT−19T2 |
| 23 | 1+0.0832iT−23T2 |
| 31 | 1−2.02iT−31T2 |
| 37 | 1−3.06T+37T2 |
| 41 | 1−3.92iT−41T2 |
| 43 | 1+7.15T+43T2 |
| 47 | 1−0.554T+47T2 |
| 53 | 1+6.25iT−53T2 |
| 59 | 1+11.5T+59T2 |
| 61 | 1−8.77iT−61T2 |
| 67 | 1+2.40iT−67T2 |
| 71 | 1+11.1T+71T2 |
| 73 | 1−7.48T+73T2 |
| 79 | 1−6.55iT−79T2 |
| 83 | 1+7.10iT−83T2 |
| 89 | 1+6.83iT−89T2 |
| 97 | 1−4.18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.440866519984943571054662768387, −7.963318498552394825206605854138, −7.31213683032015144815176885430, −6.25294137800130840337624848175, −5.94704282473884271667856972421, −5.15934334347246533837046599688, −4.01703583208055843863404906977, −3.29322570919226375473968722690, −2.59522326269529533449130679488, −1.63683266822024441043464242315,
0.092051216766765740728830424629, 1.14364805732313749406575629008, 2.12989143859381292141297498115, 3.34857548113760011289539615750, 4.28194473839164463349335149042, 4.62430559079127763781271749176, 5.43309345957566896229503914113, 6.50335600873075520083524070104, 7.13694393638585073384234710401, 7.67178159834842219630330756967