Properties

Label 2-5220-145.144-c1-0-1
Degree $2$
Conductor $5220$
Sign $-0.794 + 0.607i$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.591 + 2.15i)5-s + 2.69i·7-s − 0.968i·11-s − 2.99i·13-s − 1.02·17-s + 7.89i·19-s − 0.0832i·23-s + (−4.29 − 2.55i)25-s + (−4.28 − 3.25i)29-s + 2.02i·31-s + (−5.81 − 1.59i)35-s + 3.06·37-s + 3.92i·41-s − 7.15·43-s + 0.554·47-s + ⋯
L(s)  = 1  + (−0.264 + 0.964i)5-s + 1.01i·7-s − 0.291i·11-s − 0.831i·13-s − 0.249·17-s + 1.81i·19-s − 0.0173i·23-s + (−0.859 − 0.510i)25-s + (−0.796 − 0.604i)29-s + 0.363i·31-s + (−0.983 − 0.269i)35-s + 0.503·37-s + 0.613i·41-s − 1.09·43-s + 0.0808·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 + 0.607i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.794 + 0.607i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-0.794 + 0.607i$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5220} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -0.794 + 0.607i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3359883719\)
\(L(\frac12)\) \(\approx\) \(0.3359883719\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.591 - 2.15i)T \)
29 \( 1 + (4.28 + 3.25i)T \)
good7 \( 1 - 2.69iT - 7T^{2} \)
11 \( 1 + 0.968iT - 11T^{2} \)
13 \( 1 + 2.99iT - 13T^{2} \)
17 \( 1 + 1.02T + 17T^{2} \)
19 \( 1 - 7.89iT - 19T^{2} \)
23 \( 1 + 0.0832iT - 23T^{2} \)
31 \( 1 - 2.02iT - 31T^{2} \)
37 \( 1 - 3.06T + 37T^{2} \)
41 \( 1 - 3.92iT - 41T^{2} \)
43 \( 1 + 7.15T + 43T^{2} \)
47 \( 1 - 0.554T + 47T^{2} \)
53 \( 1 + 6.25iT - 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 8.77iT - 61T^{2} \)
67 \( 1 + 2.40iT - 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 - 7.48T + 73T^{2} \)
79 \( 1 - 6.55iT - 79T^{2} \)
83 \( 1 + 7.10iT - 83T^{2} \)
89 \( 1 + 6.83iT - 89T^{2} \)
97 \( 1 - 4.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.440866519984943571054662768387, −7.963318498552394825206605854138, −7.31213683032015144815176885430, −6.25294137800130840337624848175, −5.94704282473884271667856972421, −5.15934334347246533837046599688, −4.01703583208055843863404906977, −3.29322570919226375473968722690, −2.59522326269529533449130679488, −1.63683266822024441043464242315, 0.092051216766765740728830424629, 1.14364805732313749406575629008, 2.12989143859381292141297498115, 3.34857548113760011289539615750, 4.28194473839164463349335149042, 4.62430559079127763781271749176, 5.43309345957566896229503914113, 6.50335600873075520083524070104, 7.13694393638585073384234710401, 7.67178159834842219630330756967

Graph of the $Z$-function along the critical line