L(s) = 1 | + 2-s − 3-s − 4-s − 6-s + 7-s − 3·8-s + 9-s − 6·11-s + 12-s + 2·13-s + 14-s − 16-s − 4·17-s + 18-s − 6·19-s − 21-s − 6·22-s + 3·24-s + 2·26-s − 27-s − 28-s − 2·29-s − 10·31-s + 5·32-s + 6·33-s − 4·34-s − 36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 0.554·13-s + 0.267·14-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 1.37·19-s − 0.218·21-s − 1.27·22-s + 0.612·24-s + 0.392·26-s − 0.192·27-s − 0.188·28-s − 0.371·29-s − 1.79·31-s + 0.883·32-s + 1.04·33-s − 0.685·34-s − 1/6·36-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 7 | 1−T |
good | 2 | 1−T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+10T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−16T+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.87163300470130379010441843726, −9.564382086134303299667080987913, −8.593374216240694518737306786941, −7.73714417281129970127485027333, −6.42340127852064511914793730163, −5.52967641623344487457447591913, −4.80452837700174952413082108451, −3.85581516222527937213198033254, −2.35069263133539802699895815583, 0,
2.35069263133539802699895815583, 3.85581516222527937213198033254, 4.80452837700174952413082108451, 5.52967641623344487457447591913, 6.42340127852064511914793730163, 7.73714417281129970127485027333, 8.593374216240694518737306786941, 9.564382086134303299667080987913, 10.87163300470130379010441843726