L(s) = 1 | + 2-s − 3-s − 4-s − 6-s + 7-s − 3·8-s + 9-s − 6·11-s + 12-s + 2·13-s + 14-s − 16-s − 4·17-s + 18-s − 6·19-s − 21-s − 6·22-s + 3·24-s + 2·26-s − 27-s − 28-s − 2·29-s − 10·31-s + 5·32-s + 6·33-s − 4·34-s − 36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 0.554·13-s + 0.267·14-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 1.37·19-s − 0.218·21-s − 1.27·22-s + 0.612·24-s + 0.392·26-s − 0.192·27-s − 0.188·28-s − 0.371·29-s − 1.79·31-s + 0.883·32-s + 1.04·33-s − 0.685·34-s − 1/6·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 2 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + 6 T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + 10 T + p T^{2} \) |
| 37 | \( 1 - 4 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 16 T + p T^{2} \) |
| 71 | \( 1 - 10 T + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87163300470130379010441843726, −9.564382086134303299667080987913, −8.593374216240694518737306786941, −7.73714417281129970127485027333, −6.42340127852064511914793730163, −5.52967641623344487457447591913, −4.80452837700174952413082108451, −3.85581516222527937213198033254, −2.35069263133539802699895815583, 0,
2.35069263133539802699895815583, 3.85581516222527937213198033254, 4.80452837700174952413082108451, 5.52967641623344487457447591913, 6.42340127852064511914793730163, 7.73714417281129970127485027333, 8.593374216240694518737306786941, 9.564382086134303299667080987913, 10.87163300470130379010441843726