Properties

Label 2-525-1.1-c1-0-18
Degree $2$
Conductor $525$
Sign $-1$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s − 6-s + 7-s − 3·8-s + 9-s − 6·11-s + 12-s + 2·13-s + 14-s − 16-s − 4·17-s + 18-s − 6·19-s − 21-s − 6·22-s + 3·24-s + 2·26-s − 27-s − 28-s − 2·29-s − 10·31-s + 5·32-s + 6·33-s − 4·34-s − 36-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s + 0.554·13-s + 0.267·14-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 1.37·19-s − 0.218·21-s − 1.27·22-s + 0.612·24-s + 0.392·26-s − 0.192·27-s − 0.188·28-s − 0.371·29-s − 1.79·31-s + 0.883·32-s + 1.04·33-s − 0.685·34-s − 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 - T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.87163300470130379010441843726, −9.564382086134303299667080987913, −8.593374216240694518737306786941, −7.73714417281129970127485027333, −6.42340127852064511914793730163, −5.52967641623344487457447591913, −4.80452837700174952413082108451, −3.85581516222527937213198033254, −2.35069263133539802699895815583, 0, 2.35069263133539802699895815583, 3.85581516222527937213198033254, 4.80452837700174952413082108451, 5.52967641623344487457447591913, 6.42340127852064511914793730163, 7.73714417281129970127485027333, 8.593374216240694518737306786941, 9.564382086134303299667080987913, 10.87163300470130379010441843726

Graph of the $Z$-function along the critical line