Properties

Label 2-525-105.104-c1-0-16
Degree $2$
Conductor $525$
Sign $0.715 - 0.698i$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s − 2·4-s + (−0.866 + 2.5i)7-s + 2.99·9-s − 3.46·12-s + 5.19·13-s + 4·16-s + 8.66i·19-s + (−1.49 + 4.33i)21-s + 5.19·27-s + (1.73 − 5i)28-s + 8.66i·31-s − 5.99·36-s − 10i·37-s + 9·39-s + ⋯
L(s)  = 1  + 1.00·3-s − 4-s + (−0.327 + 0.944i)7-s + 0.999·9-s − 1.00·12-s + 1.44·13-s + 16-s + 1.98i·19-s + (−0.327 + 0.944i)21-s + 1.00·27-s + (0.327 − 0.944i)28-s + 1.55i·31-s − 0.999·36-s − 1.64i·37-s + 1.44·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.715 - 0.698i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.715 - 0.698i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $0.715 - 0.698i$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{525} (524, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ 0.715 - 0.698i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.51484 + 0.617093i\)
\(L(\frac12)\) \(\approx\) \(1.51484 + 0.617093i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 1.73T \)
5 \( 1 \)
7 \( 1 + (0.866 - 2.5i)T \)
good2 \( 1 + 2T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 5.19T + 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 8.66iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 8.66iT - 31T^{2} \)
37 \( 1 + 10iT - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 5iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8.66iT - 61T^{2} \)
67 \( 1 + 5iT - 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 13.8T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 19.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68065348275087269891544159723, −9.881739310934245878951532277051, −8.952129248420810776918006420364, −8.571086443880812634826626374714, −7.72472803048816042952177769385, −6.27331866249875387612168106742, −5.34934078652998875859280284817, −3.95588915906764318521666195230, −3.30527053522407803150577570583, −1.65346617475158190382470573438, 1.02685279558057878079671248462, 2.98904242763748093802211547049, 3.97788750817692412371426635244, 4.69970713442226506322571479400, 6.26650531315286869363913951717, 7.31909911075668038044554405328, 8.247250133328751903811818066068, 8.968716275418364864983112488199, 9.685730621295823390260165075959, 10.51901924306159081459812695569

Graph of the $Z$-function along the critical line