L(s) = 1 | + 1.73·3-s − 2·4-s + (−0.866 + 2.5i)7-s + 2.99·9-s − 3.46·12-s + 5.19·13-s + 4·16-s + 8.66i·19-s + (−1.49 + 4.33i)21-s + 5.19·27-s + (1.73 − 5i)28-s + 8.66i·31-s − 5.99·36-s − 10i·37-s + 9·39-s + ⋯ |
L(s) = 1 | + 1.00·3-s − 4-s + (−0.327 + 0.944i)7-s + 0.999·9-s − 1.00·12-s + 1.44·13-s + 16-s + 1.98i·19-s + (−0.327 + 0.944i)21-s + 1.00·27-s + (0.327 − 0.944i)28-s + 1.55i·31-s − 0.999·36-s − 1.64i·37-s + 1.44·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.715 - 0.698i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.715 - 0.698i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51484 + 0.617093i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51484 + 0.617093i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 1.73T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.866 - 2.5i)T \) |
good | 2 | \( 1 + 2T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 5.19T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 8.66iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 8.66iT - 31T^{2} \) |
| 37 | \( 1 + 10iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 5iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 8.66iT - 61T^{2} \) |
| 67 | \( 1 + 5iT - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 13.8T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 19.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68065348275087269891544159723, −9.881739310934245878951532277051, −8.952129248420810776918006420364, −8.571086443880812634826626374714, −7.72472803048816042952177769385, −6.27331866249875387612168106742, −5.34934078652998875859280284817, −3.95588915906764318521666195230, −3.30527053522407803150577570583, −1.65346617475158190382470573438,
1.02685279558057878079671248462, 2.98904242763748093802211547049, 3.97788750817692412371426635244, 4.69970713442226506322571479400, 6.26650531315286869363913951717, 7.31909911075668038044554405328, 8.247250133328751903811818066068, 8.968716275418364864983112488199, 9.685730621295823390260165075959, 10.51901924306159081459812695569