L(s) = 1 | − 1.73·3-s − 2·4-s + (0.866 + 2.5i)7-s + 2.99·9-s + 3.46·12-s − 5.19·13-s + 4·16-s − 8.66i·19-s + (−1.49 − 4.33i)21-s − 5.19·27-s + (−1.73 − 5i)28-s − 8.66i·31-s − 5.99·36-s − 10i·37-s + 9·39-s + ⋯ |
L(s) = 1 | − 1.00·3-s − 4-s + (0.327 + 0.944i)7-s + 0.999·9-s + 1.00·12-s − 1.44·13-s + 16-s − 1.98i·19-s + (−0.327 − 0.944i)21-s − 1.00·27-s + (−0.327 − 0.944i)28-s − 1.55i·31-s − 0.999·36-s − 1.64i·37-s + 1.44·39-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.129+0.991i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(−0.129+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.129+0.991i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(524,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), −0.129+0.991i)
|
Particular Values
L(1) |
≈ |
0.289103−0.329418i |
L(21) |
≈ |
0.289103−0.329418i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+1.73T |
| 5 | 1 |
| 7 | 1+(−0.866−2.5i)T |
good | 2 | 1+2T2 |
| 11 | 1−11T2 |
| 13 | 1+5.19T+13T2 |
| 17 | 1−17T2 |
| 19 | 1+8.66iT−19T2 |
| 23 | 1+23T2 |
| 29 | 1−29T2 |
| 31 | 1+8.66iT−31T2 |
| 37 | 1+10iT−37T2 |
| 41 | 1+41T2 |
| 43 | 1+5iT−43T2 |
| 47 | 1−47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1−8.66iT−61T2 |
| 67 | 1+5iT−67T2 |
| 71 | 1−71T2 |
| 73 | 1−13.8T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+89T2 |
| 97 | 1+19.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69065134712188122127316533885, −9.542994875702193078198259682580, −9.170377392242587473362865031441, −7.892373657994132158383364893483, −6.94528768279055183720331696645, −5.65537697477364257038411022252, −5.05521707132237474578327744846, −4.23950650292507199390242448515, −2.40628662692044119453696030807, −0.33090966372630186139671030315,
1.32405775916972774205726664311, 3.63816324703329082798230012468, 4.65708942210780292188596659207, 5.25319537156480419360196590242, 6.48180853456505477535957617944, 7.52691468897359460854277318247, 8.273361313864786450872978086708, 9.815122855065261890362439773622, 10.02746380944785580204169477457, 10.97597614297880465032724013415