L(s) = 1 | − 1.73·3-s − 2·4-s + (0.866 + 2.5i)7-s + 2.99·9-s + 3.46·12-s − 5.19·13-s + 4·16-s − 8.66i·19-s + (−1.49 − 4.33i)21-s − 5.19·27-s + (−1.73 − 5i)28-s − 8.66i·31-s − 5.99·36-s − 10i·37-s + 9·39-s + ⋯ |
L(s) = 1 | − 1.00·3-s − 4-s + (0.327 + 0.944i)7-s + 0.999·9-s + 1.00·12-s − 1.44·13-s + 16-s − 1.98i·19-s + (−0.327 − 0.944i)21-s − 1.00·27-s + (−0.327 − 0.944i)28-s − 1.55i·31-s − 0.999·36-s − 1.64i·37-s + 1.44·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.289103 - 0.329418i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.289103 - 0.329418i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 1.73T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 2.5i)T \) |
good | 2 | \( 1 + 2T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + 5.19T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 8.66iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 8.66iT - 31T^{2} \) |
| 37 | \( 1 + 10iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 5iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 8.66iT - 61T^{2} \) |
| 67 | \( 1 + 5iT - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 13.8T + 73T^{2} \) |
| 79 | \( 1 - 4T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 19.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69065134712188122127316533885, −9.542994875702193078198259682580, −9.170377392242587473362865031441, −7.892373657994132158383364893483, −6.94528768279055183720331696645, −5.65537697477364257038411022252, −5.05521707132237474578327744846, −4.23950650292507199390242448515, −2.40628662692044119453696030807, −0.33090966372630186139671030315,
1.32405775916972774205726664311, 3.63816324703329082798230012468, 4.65708942210780292188596659207, 5.25319537156480419360196590242, 6.48180853456505477535957617944, 7.52691468897359460854277318247, 8.273361313864786450872978086708, 9.815122855065261890362439773622, 10.02746380944785580204169477457, 10.97597614297880465032724013415