L(s) = 1 | − 1.73·2-s + 1.73·3-s + 0.999·4-s − 2.99·6-s + (1.73 − 2i)7-s + 1.73·8-s + 2.99·9-s + 3.46i·11-s + 1.73·12-s + (−2.99 + 3.46i)14-s − 5·16-s − 6i·17-s − 5.19·18-s + 3.46i·19-s + (2.99 − 3.46i)21-s − 5.99i·22-s + ⋯ |
L(s) = 1 | − 1.22·2-s + 1.00·3-s + 0.499·4-s − 1.22·6-s + (0.654 − 0.755i)7-s + 0.612·8-s + 0.999·9-s + 1.04i·11-s + 0.500·12-s + (−0.801 + 0.925i)14-s − 1.25·16-s − 1.45i·17-s − 1.22·18-s + 0.794i·19-s + (0.654 − 0.755i)21-s − 1.27i·22-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.968+0.247i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(0.968+0.247i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.968+0.247i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(524,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), 0.968+0.247i)
|
Particular Values
L(1) |
≈ |
1.15773−0.145520i |
L(21) |
≈ |
1.15773−0.145520i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−1.73T |
| 5 | 1 |
| 7 | 1+(−1.73+2i)T |
good | 2 | 1+1.73T+2T2 |
| 11 | 1−3.46iT−11T2 |
| 13 | 1+13T2 |
| 17 | 1+6iT−17T2 |
| 19 | 1−3.46iT−19T2 |
| 23 | 1−3.46T+23T2 |
| 29 | 1+6.92iT−29T2 |
| 31 | 1−3.46iT−31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1−12iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1−12T+59T2 |
| 61 | 1−6.92iT−61T2 |
| 67 | 1+8iT−67T2 |
| 71 | 1+3.46iT−71T2 |
| 73 | 1−6.92T+73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+6.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40335084660920893921396217859, −9.770338957526745238007914661872, −9.128940917908522275627797698986, −8.148946026181638605974642358321, −7.50528039832052153106196428743, −6.95027573315165821563669462409, −4.89855763857709975144732793745, −4.07421525887621953210749049990, −2.42076348425047111622674158741, −1.18870888224860901074469397589,
1.34277948835798500127276589344, 2.57606205125438410781092667339, 3.97900958360396786414068742996, 5.27944241422446973205677357206, 6.70267301208308914027839350482, 7.76705470977258941458935466993, 8.553375506640330609193478756077, 8.800401873638799884185958784555, 9.734371329967574109255276923591, 10.74468419557150499902276473547