L(s) = 1 | − 1.09·2-s + (0.323 − 1.70i)3-s − 0.791·4-s + (−0.355 + 1.87i)6-s + (2.44 + i)7-s + 3.06·8-s + (−2.79 − 1.09i)9-s − 3.06i·11-s + (−0.255 + 1.34i)12-s + 2.44·13-s + (−2.69 − 1.09i)14-s − 1.79·16-s − 2.69i·17-s + (3.06 + 1.20i)18-s + 4.38i·19-s + ⋯ |
L(s) = 1 | − 0.777·2-s + (0.186 − 0.982i)3-s − 0.395·4-s + (−0.144 + 0.763i)6-s + (0.925 + 0.377i)7-s + 1.08·8-s + (−0.930 − 0.366i)9-s − 0.925i·11-s + (−0.0737 + 0.388i)12-s + 0.679·13-s + (−0.719 − 0.293i)14-s − 0.447·16-s − 0.653i·17-s + (0.723 + 0.284i)18-s + 1.00i·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.111+0.993i)Λ(2−s)
Λ(s)=(=(525s/2ΓC(s+1/2)L(s)(−0.111+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.111+0.993i
|
Analytic conductor: |
4.19214 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(524,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :1/2), −0.111+0.993i)
|
Particular Values
L(1) |
≈ |
0.616153−0.689029i |
L(21) |
≈ |
0.616153−0.689029i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.323+1.70i)T |
| 5 | 1 |
| 7 | 1+(−2.44−i)T |
good | 2 | 1+1.09T+2T2 |
| 11 | 1+3.06iT−11T2 |
| 13 | 1−2.44T+13T2 |
| 17 | 1+2.69iT−17T2 |
| 19 | 1−4.38iT−19T2 |
| 23 | 1−5.26T+23T2 |
| 29 | 1+5.26iT−29T2 |
| 31 | 1+6.83iT−31T2 |
| 37 | 1+8.58iT−37T2 |
| 41 | 1+10.2T+41T2 |
| 43 | 1+6.58iT−43T2 |
| 47 | 1+2.69iT−47T2 |
| 53 | 1+3.93T+53T2 |
| 59 | 1+7.51T+59T2 |
| 61 | 1−6.83iT−61T2 |
| 67 | 1+4.16iT−67T2 |
| 71 | 1+3.06iT−71T2 |
| 73 | 1−16.1T+73T2 |
| 79 | 1+0.582T+79T2 |
| 83 | 1−15.5iT−83T2 |
| 89 | 1−7.51T+89T2 |
| 97 | 1−11.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72883620635928795584609752230, −9.410283173207150914955909502677, −8.674701637055155110648863285949, −8.093348190401457623250421818036, −7.38141699889761127649224929093, −6.07641155210349842967616788979, −5.16044681187479863854667454203, −3.66208082941647762765850933882, −2.04930744365160506444409857172, −0.790496798338438195516719997049,
1.50703478872330246170754156174, 3.38110662507074087999899644331, 4.72261686177246790873297109172, 4.94136395789514421132196476977, 6.76126748113426243016770535431, 7.88469856198650617324458870271, 8.630942104137068477181844126139, 9.230539670301388692039409617633, 10.24016913604915963668814315653, 10.74291524081581183741463249124