L(s) = 1 | + (0.707 + 0.707i)3-s + i·4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (−1.41 − 1.41i)13-s − 16-s + 1.00·21-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)28-s − 1.00·36-s − 2.00i·39-s + (−0.707 − 0.707i)48-s − 1.00i·49-s + (1.41 − 1.41i)52-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + i·4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (−1.41 − 1.41i)13-s − 16-s + 1.00·21-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)28-s − 1.00·36-s − 2.00i·39-s + (−0.707 − 0.707i)48-s − 1.00i·49-s + (1.41 − 1.41i)52-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(0.525−0.850i)Λ(1−s)
Λ(s)=(=(525s/2ΓC(s)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
0.262009 |
Root analytic conductor: |
0.511868 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(482,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :0), 0.525−0.850i)
|
Particular Values
L(21) |
≈ |
1.099014480 |
L(21) |
≈ |
1.099014480 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.707−0.707i)T |
| 5 | 1 |
| 7 | 1+(−0.707+0.707i)T |
good | 2 | 1−iT2 |
| 11 | 1−T2 |
| 13 | 1+(1.41+1.41i)T+iT2 |
| 17 | 1+iT2 |
| 19 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1+iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+iT2 |
| 71 | 1−T2 |
| 73 | 1+(−1.41−1.41i)T+iT2 |
| 79 | 1+2iT−T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(1.41−1.41i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.06108380627880486390462260870, −10.30225557912887942282927169291, −9.464701425020300512291751869324, −8.346892619081897966562496969315, −7.81686311572672741583771313411, −7.12229114070007169020647589642, −5.25884991901432943458564428020, −4.44842047778893738728465787677, −3.41988749853379855521739311917, −2.42039816419682535206851573929,
1.69822973109905766515715123762, 2.51579122388132870600032895965, 4.36040654690935255497014599943, 5.35157498113411266144568729314, 6.48035186241955739564708130023, 7.24952941496681362549494908476, 8.326894639642039016689801821975, 9.257667905558522955721180684344, 9.726748370637548568561613724359, 11.04577503457517942785670812698