L(s) = 1 | + (0.707 + 0.707i)3-s + i·4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (−1.41 − 1.41i)13-s − 16-s + 1.00·21-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)28-s − 1.00·36-s − 2.00i·39-s + (−0.707 − 0.707i)48-s − 1.00i·49-s + (1.41 − 1.41i)52-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + i·4-s + (0.707 − 0.707i)7-s + 1.00i·9-s + (−0.707 + 0.707i)12-s + (−1.41 − 1.41i)13-s − 16-s + 1.00·21-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)28-s − 1.00·36-s − 2.00i·39-s + (−0.707 − 0.707i)48-s − 1.00i·49-s + (1.41 − 1.41i)52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.099014480\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.099014480\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
good | 2 | \( 1 - iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06108380627880486390462260870, −10.30225557912887942282927169291, −9.464701425020300512291751869324, −8.346892619081897966562496969315, −7.81686311572672741583771313411, −7.12229114070007169020647589642, −5.25884991901432943458564428020, −4.44842047778893738728465787677, −3.41988749853379855521739311917, −2.42039816419682535206851573929,
1.69822973109905766515715123762, 2.51579122388132870600032895965, 4.36040654690935255497014599943, 5.35157498113411266144568729314, 6.48035186241955739564708130023, 7.24952941496681362549494908476, 8.326894639642039016689801821975, 9.257667905558522955721180684344, 9.726748370637548568561613724359, 11.04577503457517942785670812698