L(s) = 1 | − 1.70i·2-s − 3i·3-s + 5.10·4-s − 5.10·6-s + 7i·7-s − 22.2i·8-s − 9·9-s + 37.4·11-s − 15.3i·12-s − 29.0i·13-s + 11.9·14-s + 2.89·16-s + 58.4i·17-s + 15.3i·18-s + 54.5·19-s + ⋯ |
L(s) = 1 | − 0.601i·2-s − 0.577i·3-s + 0.638·4-s − 0.347·6-s + 0.377i·7-s − 0.985i·8-s − 0.333·9-s + 1.02·11-s − 0.368i·12-s − 0.619i·13-s + 0.227·14-s + 0.0452·16-s + 0.833i·17-s + 0.200i·18-s + 0.659·19-s + ⋯ |
Λ(s)=(=(525s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(525s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
525
= 3⋅52⋅7
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
30.9760 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ525(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 525, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
≈ |
2.483173384 |
L(21) |
≈ |
2.483173384 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3iT |
| 5 | 1 |
| 7 | 1−7iT |
good | 2 | 1+1.70iT−8T2 |
| 11 | 1−37.4T+1.33e3T2 |
| 13 | 1+29.0iT−2.19e3T2 |
| 17 | 1−58.4iT−4.91e3T2 |
| 19 | 1−54.5T+6.85e3T2 |
| 23 | 1+161.iT−1.21e4T2 |
| 29 | 1+137.T+2.43e4T2 |
| 31 | 1−154.T+2.97e4T2 |
| 37 | 1+350.iT−5.06e4T2 |
| 41 | 1−353.T+6.89e4T2 |
| 43 | 1−518.iT−7.95e4T2 |
| 47 | 1+542.iT−1.03e5T2 |
| 53 | 1+305.iT−1.48e5T2 |
| 59 | 1+14.6T+2.05e5T2 |
| 61 | 1+171.T+2.26e5T2 |
| 67 | 1−551.iT−3.00e5T2 |
| 71 | 1+120.T+3.57e5T2 |
| 73 | 1+284.iT−3.89e5T2 |
| 79 | 1+941.T+4.93e5T2 |
| 83 | 1+377.iT−5.71e5T2 |
| 89 | 1−677.T+7.04e5T2 |
| 97 | 1+1.22e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34077258387896157738125198695, −9.379700224307719900981578086573, −8.369270503816395697422366970009, −7.38774583064520151755923677994, −6.46760973555944416210231163172, −5.75731937302738976463607514912, −4.12312531176882143638939626380, −2.98568718307386687278641873315, −1.94162757884440659143311000644, −0.798245066365011784058325706290,
1.40047953370695651041519233341, 2.93953450709289900493870022123, 4.10584405886855613180340072901, 5.24277622308417801666530011906, 6.21225056256950016229078713362, 7.10623925716719638895432003291, 7.83092551379854683403825392977, 9.088882900762429916558496784427, 9.672263532239419960032676827589, 10.83680943085414779157017277532