Properties

Label 2-5292-63.20-c1-0-2
Degree 22
Conductor 52925292
Sign 0.2940.955i-0.294 - 0.955i
Analytic cond. 42.256842.2568
Root an. cond. 6.500526.50052
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.349 − 0.605i)5-s + (0.229 + 0.132i)11-s + (1.13 − 0.657i)13-s − 3.72·17-s − 0.441i·19-s + (−4.29 + 2.48i)23-s + (2.25 − 3.90i)25-s + (0.273 + 0.157i)29-s + (−4.85 + 2.80i)31-s + 0.702·37-s + (5.39 + 9.34i)41-s + (3.73 − 6.46i)43-s + (−3.50 + 6.06i)47-s + 9.83i·53-s − 0.185i·55-s + ⋯
L(s)  = 1  + (−0.156 − 0.270i)5-s + (0.0692 + 0.0399i)11-s + (0.315 − 0.182i)13-s − 0.904·17-s − 0.101i·19-s + (−0.896 + 0.517i)23-s + (0.451 − 0.781i)25-s + (0.0507 + 0.0292i)29-s + (−0.872 + 0.503i)31-s + 0.115·37-s + (0.842 + 1.45i)41-s + (0.569 − 0.985i)43-s + (−0.510 + 0.884i)47-s + 1.35i·53-s − 0.0250i·55-s + ⋯

Functional equation

Λ(s)=(5292s/2ΓC(s)L(s)=((0.2940.955i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.294 - 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(5292s/2ΓC(s+1/2)L(s)=((0.2940.955i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.294 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 52925292    =    2233722^{2} \cdot 3^{3} \cdot 7^{2}
Sign: 0.2940.955i-0.294 - 0.955i
Analytic conductor: 42.256842.2568
Root analytic conductor: 6.500526.50052
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ5292(4409,)\chi_{5292} (4409, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 5292, ( :1/2), 0.2940.955i)(2,\ 5292,\ (\ :1/2),\ -0.294 - 0.955i)

Particular Values

L(1)L(1) \approx 0.85706597810.8570659781
L(12)L(\frac12) \approx 0.85706597810.8570659781
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1 1
good5 1+(0.349+0.605i)T+(2.5+4.33i)T2 1 + (0.349 + 0.605i)T + (-2.5 + 4.33i)T^{2}
11 1+(0.2290.132i)T+(5.5+9.52i)T2 1 + (-0.229 - 0.132i)T + (5.5 + 9.52i)T^{2}
13 1+(1.13+0.657i)T+(6.511.2i)T2 1 + (-1.13 + 0.657i)T + (6.5 - 11.2i)T^{2}
17 1+3.72T+17T2 1 + 3.72T + 17T^{2}
19 1+0.441iT19T2 1 + 0.441iT - 19T^{2}
23 1+(4.292.48i)T+(11.519.9i)T2 1 + (4.29 - 2.48i)T + (11.5 - 19.9i)T^{2}
29 1+(0.2730.157i)T+(14.5+25.1i)T2 1 + (-0.273 - 0.157i)T + (14.5 + 25.1i)T^{2}
31 1+(4.852.80i)T+(15.526.8i)T2 1 + (4.85 - 2.80i)T + (15.5 - 26.8i)T^{2}
37 10.702T+37T2 1 - 0.702T + 37T^{2}
41 1+(5.399.34i)T+(20.5+35.5i)T2 1 + (-5.39 - 9.34i)T + (-20.5 + 35.5i)T^{2}
43 1+(3.73+6.46i)T+(21.537.2i)T2 1 + (-3.73 + 6.46i)T + (-21.5 - 37.2i)T^{2}
47 1+(3.506.06i)T+(23.540.7i)T2 1 + (3.50 - 6.06i)T + (-23.5 - 40.7i)T^{2}
53 19.83iT53T2 1 - 9.83iT - 53T^{2}
59 1+(6.73+11.6i)T+(29.5+51.0i)T2 1 + (6.73 + 11.6i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.89+2.82i)T+(30.5+52.8i)T2 1 + (4.89 + 2.82i)T + (30.5 + 52.8i)T^{2}
67 1+(2.975.14i)T+(33.5+58.0i)T2 1 + (-2.97 - 5.14i)T + (-33.5 + 58.0i)T^{2}
71 113.4iT71T2 1 - 13.4iT - 71T^{2}
73 17.69iT73T2 1 - 7.69iT - 73T^{2}
79 1+(0.6981.20i)T+(39.568.4i)T2 1 + (0.698 - 1.20i)T + (-39.5 - 68.4i)T^{2}
83 1+(3.72+6.45i)T+(41.571.8i)T2 1 + (-3.72 + 6.45i)T + (-41.5 - 71.8i)T^{2}
89 111.1T+89T2 1 - 11.1T + 89T^{2}
97 1+(9.18+5.30i)T+(48.5+84.0i)T2 1 + (9.18 + 5.30i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.328419823888493165082662650655, −7.81098924667462160557116861665, −6.94589111647104476627161246068, −6.25899852508193792989561213708, −5.55976542555005553238729682230, −4.62947828024429568207234890716, −4.07607352779368679631288943854, −3.10234401279720911036225616929, −2.17370950830499542087816745538, −1.10330467521976215848156246864, 0.23812833573828397108895137382, 1.67048777960493427815750758768, 2.52095945589610122102896736865, 3.54759231677134077010970095330, 4.18911120127577210863701577463, 5.03566198123390034501314731792, 5.94160293286285378833500828068, 6.51129837964575077371947131675, 7.30975693062598967191955149196, 7.893500308601105164948506812340

Graph of the ZZ-function along the critical line