Properties

Label 2-52e2-1.1-c1-0-0
Degree $2$
Conductor $2704$
Sign $1$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.386·3-s − 3.17·5-s − 3.44·7-s − 2.85·9-s − 3.44·11-s + 1.22·15-s − 1.77·17-s − 3.33·19-s + 1.33·21-s + 0.386·23-s + 5.07·25-s + 2.26·27-s − 4.57·29-s − 11.0·31-s + 1.33·33-s + 10.9·35-s + 1.62·37-s − 2.26·41-s − 10.7·43-s + 9.04·45-s − 8.11·47-s + 4.85·49-s + 0.685·51-s + 11.6·53-s + 10.9·55-s + 1.28·57-s + 6.32·59-s + ⋯
L(s)  = 1  − 0.223·3-s − 1.41·5-s − 1.30·7-s − 0.950·9-s − 1.03·11-s + 0.316·15-s − 0.430·17-s − 0.764·19-s + 0.290·21-s + 0.0805·23-s + 1.01·25-s + 0.435·27-s − 0.849·29-s − 1.98·31-s + 0.231·33-s + 1.84·35-s + 0.266·37-s − 0.354·41-s − 1.63·43-s + 1.34·45-s − 1.18·47-s + 0.692·49-s + 0.0959·51-s + 1.60·53-s + 1.47·55-s + 0.170·57-s + 0.823·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08534023457\)
\(L(\frac12)\) \(\approx\) \(0.08534023457\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 0.386T + 3T^{2} \)
5 \( 1 + 3.17T + 5T^{2} \)
7 \( 1 + 3.44T + 7T^{2} \)
11 \( 1 + 3.44T + 11T^{2} \)
17 \( 1 + 1.77T + 17T^{2} \)
19 \( 1 + 3.33T + 19T^{2} \)
23 \( 1 - 0.386T + 23T^{2} \)
29 \( 1 + 4.57T + 29T^{2} \)
31 \( 1 + 11.0T + 31T^{2} \)
37 \( 1 - 1.62T + 37T^{2} \)
41 \( 1 + 2.26T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 8.11T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 - 6.32T + 59T^{2} \)
61 \( 1 - 2.42T + 61T^{2} \)
67 \( 1 - 9.14T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 - 8.40T + 73T^{2} \)
79 \( 1 + 8.22T + 79T^{2} \)
83 \( 1 + 1.11T + 83T^{2} \)
89 \( 1 - 17.8T + 89T^{2} \)
97 \( 1 + 4.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.667614965565705896428426054603, −8.158039274458161539329821621107, −7.27530984160419824275845599678, −6.66894779916955244575736862128, −5.72831592479153046398081590413, −4.98340819878695095957373530243, −3.81020402386030550702407536809, −3.34239416422248359006747810188, −2.32986820345926741717739082766, −0.16842961856690561817906113073, 0.16842961856690561817906113073, 2.32986820345926741717739082766, 3.34239416422248359006747810188, 3.81020402386030550702407536809, 4.98340819878695095957373530243, 5.72831592479153046398081590413, 6.66894779916955244575736862128, 7.27530984160419824275845599678, 8.158039274458161539329821621107, 8.667614965565705896428426054603

Graph of the $Z$-function along the critical line