Properties

Label 2-52e2-1.1-c1-0-26
Degree $2$
Conductor $2704$
Sign $1$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.76·3-s + 4.24·5-s + 2.37·7-s + 4.63·9-s + 0.178·11-s − 11.7·15-s + 1.03·17-s + 5.25·19-s − 6.56·21-s + 0.130·23-s + 13.0·25-s − 4.52·27-s + 8.33·29-s + 2.94·31-s − 0.494·33-s + 10.0·35-s − 6.03·37-s − 0.264·41-s − 0.564·43-s + 19.7·45-s − 10.9·47-s − 1.36·49-s − 2.87·51-s + 2.41·53-s + 0.760·55-s − 14.5·57-s + 7.35·59-s + ⋯
L(s)  = 1  − 1.59·3-s + 1.90·5-s + 0.897·7-s + 1.54·9-s + 0.0539·11-s − 3.03·15-s + 0.252·17-s + 1.20·19-s − 1.43·21-s + 0.0271·23-s + 2.61·25-s − 0.871·27-s + 1.54·29-s + 0.529·31-s − 0.0860·33-s + 1.70·35-s − 0.992·37-s − 0.0413·41-s − 0.0861·43-s + 2.93·45-s − 1.59·47-s − 0.194·49-s − 0.402·51-s + 0.332·53-s + 0.102·55-s − 1.92·57-s + 0.957·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.898684584\)
\(L(\frac12)\) \(\approx\) \(1.898684584\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2.76T + 3T^{2} \)
5 \( 1 - 4.24T + 5T^{2} \)
7 \( 1 - 2.37T + 7T^{2} \)
11 \( 1 - 0.178T + 11T^{2} \)
17 \( 1 - 1.03T + 17T^{2} \)
19 \( 1 - 5.25T + 19T^{2} \)
23 \( 1 - 0.130T + 23T^{2} \)
29 \( 1 - 8.33T + 29T^{2} \)
31 \( 1 - 2.94T + 31T^{2} \)
37 \( 1 + 6.03T + 37T^{2} \)
41 \( 1 + 0.264T + 41T^{2} \)
43 \( 1 + 0.564T + 43T^{2} \)
47 \( 1 + 10.9T + 47T^{2} \)
53 \( 1 - 2.41T + 53T^{2} \)
59 \( 1 - 7.35T + 59T^{2} \)
61 \( 1 + 5.06T + 61T^{2} \)
67 \( 1 - 1.58T + 67T^{2} \)
71 \( 1 + 10.3T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 - 7.26T + 79T^{2} \)
83 \( 1 - 12.9T + 83T^{2} \)
89 \( 1 - 6.92T + 89T^{2} \)
97 \( 1 + 3.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023040954832512457164632680347, −8.053650654615968769488361210523, −6.90530367604280605867303404472, −6.41859426098273627616223350967, −5.63463201912198505609226676440, −5.15566355911287136077186686048, −4.63256367987969710671163544977, −2.96103997637910477344852033986, −1.71393808287302505058481695129, −1.04303182035722041540687006314, 1.04303182035722041540687006314, 1.71393808287302505058481695129, 2.96103997637910477344852033986, 4.63256367987969710671163544977, 5.15566355911287136077186686048, 5.63463201912198505609226676440, 6.41859426098273627616223350967, 6.90530367604280605867303404472, 8.053650654615968769488361210523, 9.023040954832512457164632680347

Graph of the $Z$-function along the critical line