L(s) = 1 | − 2.76·3-s + 4.24·5-s + 2.37·7-s + 4.63·9-s + 0.178·11-s − 11.7·15-s + 1.03·17-s + 5.25·19-s − 6.56·21-s + 0.130·23-s + 13.0·25-s − 4.52·27-s + 8.33·29-s + 2.94·31-s − 0.494·33-s + 10.0·35-s − 6.03·37-s − 0.264·41-s − 0.564·43-s + 19.7·45-s − 10.9·47-s − 1.36·49-s − 2.87·51-s + 2.41·53-s + 0.760·55-s − 14.5·57-s + 7.35·59-s + ⋯ |
L(s) = 1 | − 1.59·3-s + 1.90·5-s + 0.897·7-s + 1.54·9-s + 0.0539·11-s − 3.03·15-s + 0.252·17-s + 1.20·19-s − 1.43·21-s + 0.0271·23-s + 2.61·25-s − 0.871·27-s + 1.54·29-s + 0.529·31-s − 0.0860·33-s + 1.70·35-s − 0.992·37-s − 0.0413·41-s − 0.0861·43-s + 2.93·45-s − 1.59·47-s − 0.194·49-s − 0.402·51-s + 0.332·53-s + 0.102·55-s − 1.92·57-s + 0.957·59-s + ⋯ |
Λ(s)=(=(2704s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2704s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.898684584 |
L(21) |
≈ |
1.898684584 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+2.76T+3T2 |
| 5 | 1−4.24T+5T2 |
| 7 | 1−2.37T+7T2 |
| 11 | 1−0.178T+11T2 |
| 17 | 1−1.03T+17T2 |
| 19 | 1−5.25T+19T2 |
| 23 | 1−0.130T+23T2 |
| 29 | 1−8.33T+29T2 |
| 31 | 1−2.94T+31T2 |
| 37 | 1+6.03T+37T2 |
| 41 | 1+0.264T+41T2 |
| 43 | 1+0.564T+43T2 |
| 47 | 1+10.9T+47T2 |
| 53 | 1−2.41T+53T2 |
| 59 | 1−7.35T+59T2 |
| 61 | 1+5.06T+61T2 |
| 67 | 1−1.58T+67T2 |
| 71 | 1+10.3T+71T2 |
| 73 | 1+14.3T+73T2 |
| 79 | 1−7.26T+79T2 |
| 83 | 1−12.9T+83T2 |
| 89 | 1−6.92T+89T2 |
| 97 | 1+3.63T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.023040954832512457164632680347, −8.053650654615968769488361210523, −6.90530367604280605867303404472, −6.41859426098273627616223350967, −5.63463201912198505609226676440, −5.15566355911287136077186686048, −4.63256367987969710671163544977, −2.96103997637910477344852033986, −1.71393808287302505058481695129, −1.04303182035722041540687006314,
1.04303182035722041540687006314, 1.71393808287302505058481695129, 2.96103997637910477344852033986, 4.63256367987969710671163544977, 5.15566355911287136077186686048, 5.63463201912198505609226676440, 6.41859426098273627616223350967, 6.90530367604280605867303404472, 8.053650654615968769488361210523, 9.023040954832512457164632680347