L(s) = 1 | − 2.56·3-s − 3.56·5-s + 2.56·7-s + 3.56·9-s − 2.56·11-s + 9.12·15-s − 5·17-s + 2.56·19-s − 6.56·21-s + 3.68·23-s + 7.68·25-s − 1.43·27-s − 5·29-s + 8·31-s + 6.56·33-s − 9.12·35-s − 37-s + 9.24·41-s + 6.56·43-s − 12.6·45-s − 4·47-s − 0.438·49-s + 12.8·51-s + 4.43·53-s + 9.12·55-s − 6.56·57-s + 2.56·59-s + ⋯ |
L(s) = 1 | − 1.47·3-s − 1.59·5-s + 0.968·7-s + 1.18·9-s − 0.772·11-s + 2.35·15-s − 1.21·17-s + 0.587·19-s − 1.43·21-s + 0.768·23-s + 1.53·25-s − 0.276·27-s − 0.928·29-s + 1.43·31-s + 1.14·33-s − 1.54·35-s − 0.164·37-s + 1.44·41-s + 1.00·43-s − 1.89·45-s − 0.583·47-s − 0.0626·49-s + 1.79·51-s + 0.609·53-s + 1.23·55-s − 0.869·57-s + 0.333·59-s + ⋯ |
Λ(s)=(=(2704s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2704s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+2.56T+3T2 |
| 5 | 1+3.56T+5T2 |
| 7 | 1−2.56T+7T2 |
| 11 | 1+2.56T+11T2 |
| 17 | 1+5T+17T2 |
| 19 | 1−2.56T+19T2 |
| 23 | 1−3.68T+23T2 |
| 29 | 1+5T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−9.24T+41T2 |
| 43 | 1−6.56T+43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1−4.43T+53T2 |
| 59 | 1−2.56T+59T2 |
| 61 | 1+7.24T+61T2 |
| 67 | 1−9.43T+67T2 |
| 71 | 1+7.68T+71T2 |
| 73 | 1+1.31T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1+2.24T+83T2 |
| 89 | 1+9.68T+89T2 |
| 97 | 1−2.80T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.249169078943114380213894314905, −7.61040276273750634236284507171, −7.03401257858780383813167782016, −6.10174803572499210922584177084, −5.14161687077441170328338407462, −4.67257958353095434834115931714, −3.97507229509595608839018308800, −2.65890713602005390669964368898, −1.04989136537845278309854557685, 0,
1.04989136537845278309854557685, 2.65890713602005390669964368898, 3.97507229509595608839018308800, 4.67257958353095434834115931714, 5.14161687077441170328338407462, 6.10174803572499210922584177084, 7.03401257858780383813167782016, 7.61040276273750634236284507171, 8.249169078943114380213894314905