L(s) = 1 | − 1.69·3-s + 1.19·5-s − 4.29·7-s − 0.137·9-s − 3.69·11-s − 2.02·15-s − 7.85·17-s + 4.65·19-s + 7.26·21-s − 3.71·23-s − 3.56·25-s + 5.30·27-s + 4.29·29-s − 2.91·31-s + 6.24·33-s − 5.14·35-s − 8.03·37-s + 8.10·41-s − 0.884·43-s − 0.164·45-s + 4.58·47-s + 11.4·49-s + 13.2·51-s + 5.43·53-s − 4.42·55-s − 7.87·57-s − 2.32·59-s + ⋯ |
L(s) = 1 | − 0.976·3-s + 0.535·5-s − 1.62·7-s − 0.0456·9-s − 1.11·11-s − 0.523·15-s − 1.90·17-s + 1.06·19-s + 1.58·21-s − 0.774·23-s − 0.712·25-s + 1.02·27-s + 0.797·29-s − 0.522·31-s + 1.08·33-s − 0.869·35-s − 1.32·37-s + 1.26·41-s − 0.134·43-s − 0.0244·45-s + 0.668·47-s + 1.63·49-s + 1.86·51-s + 0.746·53-s − 0.596·55-s − 1.04·57-s − 0.303·59-s + ⋯ |
Λ(s)=(=(2704s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2704s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4647125410 |
L(21) |
≈ |
0.4647125410 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+1.69T+3T2 |
| 5 | 1−1.19T+5T2 |
| 7 | 1+4.29T+7T2 |
| 11 | 1+3.69T+11T2 |
| 17 | 1+7.85T+17T2 |
| 19 | 1−4.65T+19T2 |
| 23 | 1+3.71T+23T2 |
| 29 | 1−4.29T+29T2 |
| 31 | 1+2.91T+31T2 |
| 37 | 1+8.03T+37T2 |
| 41 | 1−8.10T+41T2 |
| 43 | 1+0.884T+43T2 |
| 47 | 1−4.58T+47T2 |
| 53 | 1−5.43T+53T2 |
| 59 | 1+2.32T+59T2 |
| 61 | 1+6.25T+61T2 |
| 67 | 1−3.33T+67T2 |
| 71 | 1−4.35T+71T2 |
| 73 | 1−3.82T+73T2 |
| 79 | 1−10.5T+79T2 |
| 83 | 1+5.24T+83T2 |
| 89 | 1−9.46T+89T2 |
| 97 | 1−3.67T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.091338015546489537130091087006, −8.050959708839000786269604100093, −6.99776496310863435472079497796, −6.46182042634360261582873910082, −5.77182700118171215171156998211, −5.23039556361652102578464774545, −4.13373328174842081229521486464, −3.02288058373235829804022087277, −2.23108081560296737513201880713, −0.41414188101732677903154585741,
0.41414188101732677903154585741, 2.23108081560296737513201880713, 3.02288058373235829804022087277, 4.13373328174842081229521486464, 5.23039556361652102578464774545, 5.77182700118171215171156998211, 6.46182042634360261582873910082, 6.99776496310863435472079497796, 8.050959708839000786269604100093, 9.091338015546489537130091087006