Properties

Label 2-52e2-1.1-c1-0-38
Degree $2$
Conductor $2704$
Sign $1$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5-s + 7-s + 6·9-s − 2·11-s + 3·15-s − 3·17-s + 6·19-s + 3·21-s + 4·23-s − 4·25-s + 9·27-s + 2·29-s + 4·31-s − 6·33-s + 35-s − 3·37-s + 5·43-s + 6·45-s + 13·47-s − 6·49-s − 9·51-s + 12·53-s − 2·55-s + 18·57-s − 10·59-s − 8·61-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.447·5-s + 0.377·7-s + 2·9-s − 0.603·11-s + 0.774·15-s − 0.727·17-s + 1.37·19-s + 0.654·21-s + 0.834·23-s − 4/5·25-s + 1.73·27-s + 0.371·29-s + 0.718·31-s − 1.04·33-s + 0.169·35-s − 0.493·37-s + 0.762·43-s + 0.894·45-s + 1.89·47-s − 6/7·49-s − 1.26·51-s + 1.64·53-s − 0.269·55-s + 2.38·57-s − 1.30·59-s − 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.002843516\)
\(L(\frac12)\) \(\approx\) \(4.002843516\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 5 T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.968437800976028493256072760850, −8.051660281056901581015263821725, −7.58433170795290376453101971689, −6.83942202332506672968213427091, −5.67644357149883273045642983440, −4.77110978952904042995749180644, −3.89239162271605294968540111677, −2.91875359123950367684627079786, −2.35658502852942708851276680816, −1.29336546110615612462449119400, 1.29336546110615612462449119400, 2.35658502852942708851276680816, 2.91875359123950367684627079786, 3.89239162271605294968540111677, 4.77110978952904042995749180644, 5.67644357149883273045642983440, 6.83942202332506672968213427091, 7.58433170795290376453101971689, 8.051660281056901581015263821725, 8.968437800976028493256072760850

Graph of the $Z$-function along the critical line