L(s) = 1 | + 3·3-s + 5-s + 7-s + 6·9-s − 2·11-s + 3·15-s − 3·17-s + 6·19-s + 3·21-s + 4·23-s − 4·25-s + 9·27-s + 2·29-s + 4·31-s − 6·33-s + 35-s − 3·37-s + 5·43-s + 6·45-s + 13·47-s − 6·49-s − 9·51-s + 12·53-s − 2·55-s + 18·57-s − 10·59-s − 8·61-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.447·5-s + 0.377·7-s + 2·9-s − 0.603·11-s + 0.774·15-s − 0.727·17-s + 1.37·19-s + 0.654·21-s + 0.834·23-s − 4/5·25-s + 1.73·27-s + 0.371·29-s + 0.718·31-s − 1.04·33-s + 0.169·35-s − 0.493·37-s + 0.762·43-s + 0.894·45-s + 1.89·47-s − 6/7·49-s − 1.26·51-s + 1.64·53-s − 0.269·55-s + 2.38·57-s − 1.30·59-s − 1.02·61-s + ⋯ |
Λ(s)=(=(2704s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2704s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.002843516 |
L(21) |
≈ |
4.002843516 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1−pT+pT2 |
| 5 | 1−T+pT2 |
| 7 | 1−T+pT2 |
| 11 | 1+2T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−5T+pT2 |
| 47 | 1−13T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1+5T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.968437800976028493256072760850, −8.051660281056901581015263821725, −7.58433170795290376453101971689, −6.83942202332506672968213427091, −5.67644357149883273045642983440, −4.77110978952904042995749180644, −3.89239162271605294968540111677, −2.91875359123950367684627079786, −2.35658502852942708851276680816, −1.29336546110615612462449119400,
1.29336546110615612462449119400, 2.35658502852942708851276680816, 2.91875359123950367684627079786, 3.89239162271605294968540111677, 4.77110978952904042995749180644, 5.67644357149883273045642983440, 6.83942202332506672968213427091, 7.58433170795290376453101971689, 8.051660281056901581015263821725, 8.968437800976028493256072760850