L(s) = 1 | − 3.33·3-s − 0.932·5-s − 3.45·7-s + 8.09·9-s + 1.85·11-s + 3.10·15-s + 0.218·17-s + 5.10·19-s + 11.5·21-s − 7.49·23-s − 4.13·25-s − 16.9·27-s − 3.19·29-s − 7.91·31-s − 6.19·33-s + 3.22·35-s − 4.26·37-s − 3.27·41-s + 4.58·43-s − 7.55·45-s − 1.30·47-s + 4.95·49-s − 0.727·51-s − 2.68·53-s − 1.73·55-s − 17.0·57-s + 9.23·59-s + ⋯ |
L(s) = 1 | − 1.92·3-s − 0.417·5-s − 1.30·7-s + 2.69·9-s + 0.560·11-s + 0.802·15-s + 0.0529·17-s + 1.17·19-s + 2.51·21-s − 1.56·23-s − 0.826·25-s − 3.26·27-s − 0.593·29-s − 1.42·31-s − 1.07·33-s + 0.545·35-s − 0.701·37-s − 0.510·41-s + 0.699·43-s − 1.12·45-s − 0.191·47-s + 0.707·49-s − 0.101·51-s − 0.369·53-s − 0.233·55-s − 2.25·57-s + 1.20·59-s + ⋯ |
Λ(s)=(=(2704s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2704s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3743207639 |
L(21) |
≈ |
0.3743207639 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+3.33T+3T2 |
| 5 | 1+0.932T+5T2 |
| 7 | 1+3.45T+7T2 |
| 11 | 1−1.85T+11T2 |
| 17 | 1−0.218T+17T2 |
| 19 | 1−5.10T+19T2 |
| 23 | 1+7.49T+23T2 |
| 29 | 1+3.19T+29T2 |
| 31 | 1+7.91T+31T2 |
| 37 | 1+4.26T+37T2 |
| 41 | 1+3.27T+41T2 |
| 43 | 1−4.58T+43T2 |
| 47 | 1+1.30T+47T2 |
| 53 | 1+2.68T+53T2 |
| 59 | 1−9.23T+59T2 |
| 61 | 1+2.22T+61T2 |
| 67 | 1+4.43T+67T2 |
| 71 | 1−2.60T+71T2 |
| 73 | 1−3.28T+73T2 |
| 79 | 1+7.33T+79T2 |
| 83 | 1−3.58T+83T2 |
| 89 | 1−5.07T+89T2 |
| 97 | 1−13.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.134485689142110133124603630178, −7.69693110332998385789667527447, −7.14725959439029762244628315840, −6.37033319998848613884659009480, −5.84121451593483583917027359552, −5.18178379057667395719386365983, −4.03814686770283145865128472113, −3.55290001962095798739099436142, −1.74898532609017671213728075936, −0.41826711553313859668215894465,
0.41826711553313859668215894465, 1.74898532609017671213728075936, 3.55290001962095798739099436142, 4.03814686770283145865128472113, 5.18178379057667395719386365983, 5.84121451593483583917027359552, 6.37033319998848613884659009480, 7.14725959439029762244628315840, 7.69693110332998385789667527447, 9.134485689142110133124603630178