Properties

Label 2-52e2-1.1-c1-0-4
Degree $2$
Conductor $2704$
Sign $1$
Analytic cond. $21.5915$
Root an. cond. $4.64667$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.33·3-s − 0.932·5-s − 3.45·7-s + 8.09·9-s + 1.85·11-s + 3.10·15-s + 0.218·17-s + 5.10·19-s + 11.5·21-s − 7.49·23-s − 4.13·25-s − 16.9·27-s − 3.19·29-s − 7.91·31-s − 6.19·33-s + 3.22·35-s − 4.26·37-s − 3.27·41-s + 4.58·43-s − 7.55·45-s − 1.30·47-s + 4.95·49-s − 0.727·51-s − 2.68·53-s − 1.73·55-s − 17.0·57-s + 9.23·59-s + ⋯
L(s)  = 1  − 1.92·3-s − 0.417·5-s − 1.30·7-s + 2.69·9-s + 0.560·11-s + 0.802·15-s + 0.0529·17-s + 1.17·19-s + 2.51·21-s − 1.56·23-s − 0.826·25-s − 3.26·27-s − 0.593·29-s − 1.42·31-s − 1.07·33-s + 0.545·35-s − 0.701·37-s − 0.510·41-s + 0.699·43-s − 1.12·45-s − 0.191·47-s + 0.707·49-s − 0.101·51-s − 0.369·53-s − 0.233·55-s − 2.25·57-s + 1.20·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2704\)    =    \(2^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(21.5915\)
Root analytic conductor: \(4.64667\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3743207639\)
\(L(\frac12)\) \(\approx\) \(0.3743207639\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 3.33T + 3T^{2} \)
5 \( 1 + 0.932T + 5T^{2} \)
7 \( 1 + 3.45T + 7T^{2} \)
11 \( 1 - 1.85T + 11T^{2} \)
17 \( 1 - 0.218T + 17T^{2} \)
19 \( 1 - 5.10T + 19T^{2} \)
23 \( 1 + 7.49T + 23T^{2} \)
29 \( 1 + 3.19T + 29T^{2} \)
31 \( 1 + 7.91T + 31T^{2} \)
37 \( 1 + 4.26T + 37T^{2} \)
41 \( 1 + 3.27T + 41T^{2} \)
43 \( 1 - 4.58T + 43T^{2} \)
47 \( 1 + 1.30T + 47T^{2} \)
53 \( 1 + 2.68T + 53T^{2} \)
59 \( 1 - 9.23T + 59T^{2} \)
61 \( 1 + 2.22T + 61T^{2} \)
67 \( 1 + 4.43T + 67T^{2} \)
71 \( 1 - 2.60T + 71T^{2} \)
73 \( 1 - 3.28T + 73T^{2} \)
79 \( 1 + 7.33T + 79T^{2} \)
83 \( 1 - 3.58T + 83T^{2} \)
89 \( 1 - 5.07T + 89T^{2} \)
97 \( 1 - 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.134485689142110133124603630178, −7.69693110332998385789667527447, −7.14725959439029762244628315840, −6.37033319998848613884659009480, −5.84121451593483583917027359552, −5.18178379057667395719386365983, −4.03814686770283145865128472113, −3.55290001962095798739099436142, −1.74898532609017671213728075936, −0.41826711553313859668215894465, 0.41826711553313859668215894465, 1.74898532609017671213728075936, 3.55290001962095798739099436142, 4.03814686770283145865128472113, 5.18178379057667395719386365983, 5.84121451593483583917027359552, 6.37033319998848613884659009480, 7.14725959439029762244628315840, 7.69693110332998385789667527447, 9.134485689142110133124603630178

Graph of the $Z$-function along the critical line