L(s) = 1 | + (−0.0621 − 0.352i)3-s + (2.12 − 0.375i)5-s + (0.943 − 2.47i)7-s + (2.69 − 0.982i)9-s − 3.77·11-s + (0.242 + 0.203i)13-s + (−0.264 − 0.726i)15-s + (−0.714 + 1.96i)17-s + (2.16 − 3.78i)19-s + (−0.929 − 0.179i)21-s + (−2.05 − 1.72i)23-s + (−0.315 + 0.114i)25-s + (−1.05 − 1.81i)27-s + (3.99 + 0.703i)29-s + (1.54 + 2.67i)31-s + ⋯ |
L(s) = 1 | + (−0.0358 − 0.203i)3-s + (0.951 − 0.167i)5-s + (0.356 − 0.934i)7-s + (0.899 − 0.327i)9-s − 1.13·11-s + (0.0672 + 0.0564i)13-s + (−0.0682 − 0.187i)15-s + (−0.173 + 0.476i)17-s + (0.497 − 0.867i)19-s + (−0.202 − 0.0390i)21-s + (−0.429 − 0.360i)23-s + (−0.0631 + 0.0229i)25-s + (−0.202 − 0.350i)27-s + (0.741 + 0.130i)29-s + (0.276 + 0.479i)31-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(0.614+0.789i)Λ(2−s)
Λ(s)=(=(532s/2ΓC(s+1/2)L(s)(0.614+0.789i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
0.614+0.789i
|
Analytic conductor: |
4.24804 |
Root analytic conductor: |
2.06107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :1/2), 0.614+0.789i)
|
Particular Values
L(1) |
≈ |
1.54225−0.754209i |
L(21) |
≈ |
1.54225−0.754209i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.943+2.47i)T |
| 19 | 1+(−2.16+3.78i)T |
good | 3 | 1+(0.0621+0.352i)T+(−2.81+1.02i)T2 |
| 5 | 1+(−2.12+0.375i)T+(4.69−1.71i)T2 |
| 11 | 1+3.77T+11T2 |
| 13 | 1+(−0.242−0.203i)T+(2.25+12.8i)T2 |
| 17 | 1+(0.714−1.96i)T+(−13.0−10.9i)T2 |
| 23 | 1+(2.05+1.72i)T+(3.99+22.6i)T2 |
| 29 | 1+(−3.99−0.703i)T+(27.2+9.91i)T2 |
| 31 | 1+(−1.54−2.67i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−5.90+3.40i)T+(18.5−32.0i)T2 |
| 41 | 1+(0.706−0.592i)T+(7.11−40.3i)T2 |
| 43 | 1+(−6.24−2.27i)T+(32.9+27.6i)T2 |
| 47 | 1+(1.14+3.13i)T+(−36.0+30.2i)T2 |
| 53 | 1+(−3.30−0.583i)T+(49.8+18.1i)T2 |
| 59 | 1+(−2.65−0.968i)T+(45.1+37.9i)T2 |
| 61 | 1+(4.20−5.01i)T+(−10.5−60.0i)T2 |
| 67 | 1+(2.11−2.51i)T+(−11.6−65.9i)T2 |
| 71 | 1+(4.60−12.6i)T+(−54.3−45.6i)T2 |
| 73 | 1+(4.27−0.754i)T+(68.5−24.9i)T2 |
| 79 | 1+(−1.50+4.14i)T+(−60.5−50.7i)T2 |
| 83 | 1+(4.75+2.74i)T+(41.5+71.8i)T2 |
| 89 | 1+(1.83−10.3i)T+(−83.6−30.4i)T2 |
| 97 | 1+(−0.274−1.55i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42175940706883792264450249064, −10.08289839993009933893530041402, −9.030567277553499824188771583319, −7.890421993999858765826335178171, −7.12271916953063460239419258758, −6.15105802450847708061221871018, −5.04943293040391798184501782820, −4.10117870801467737045561205187, −2.49252063317637271510752330857, −1.13412173912734363329494866366,
1.81543498355421478688908170145, 2.82349342585913581091197939517, 4.49918385040114631508057463357, 5.45158140162686789293876871673, 6.13852162723891706777829119555, 7.49423365837652732284535460832, 8.240407980696228809906253775706, 9.479818940332242559464980569337, 9.982683377798602126464191940760, 10.79574462249709777922731848443