L(s) = 1 | + (−0.317 − 1.79i)3-s + (2.76 − 0.487i)5-s + (1.96 + 1.76i)7-s + (−0.312 + 0.113i)9-s + 0.787·11-s + (3.33 + 2.79i)13-s + (−1.75 − 4.82i)15-s + (−1.10 + 3.04i)17-s + (−4.35 + 0.199i)19-s + (2.55 − 4.09i)21-s + (5.85 + 4.91i)23-s + (2.72 − 0.990i)25-s + (−2.43 − 4.21i)27-s + (−5.09 − 0.898i)29-s + (−5.06 − 8.76i)31-s + ⋯ |
L(s) = 1 | + (−0.183 − 1.03i)3-s + (1.23 − 0.218i)5-s + (0.743 + 0.668i)7-s + (−0.104 + 0.0379i)9-s + 0.237·11-s + (0.924 + 0.776i)13-s + (−0.453 − 1.24i)15-s + (−0.268 + 0.738i)17-s + (−0.998 + 0.0458i)19-s + (0.557 − 0.894i)21-s + (1.22 + 1.02i)23-s + (0.544 − 0.198i)25-s + (−0.468 − 0.811i)27-s + (−0.946 − 0.166i)29-s + (−0.908 − 1.57i)31-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(0.757+0.652i)Λ(2−s)
Λ(s)=(=(532s/2ΓC(s+1/2)L(s)(0.757+0.652i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
0.757+0.652i
|
Analytic conductor: |
4.24804 |
Root analytic conductor: |
2.06107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :1/2), 0.757+0.652i)
|
Particular Values
L(1) |
≈ |
1.75020−0.649943i |
L(21) |
≈ |
1.75020−0.649943i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1.96−1.76i)T |
| 19 | 1+(4.35−0.199i)T |
good | 3 | 1+(0.317+1.79i)T+(−2.81+1.02i)T2 |
| 5 | 1+(−2.76+0.487i)T+(4.69−1.71i)T2 |
| 11 | 1−0.787T+11T2 |
| 13 | 1+(−3.33−2.79i)T+(2.25+12.8i)T2 |
| 17 | 1+(1.10−3.04i)T+(−13.0−10.9i)T2 |
| 23 | 1+(−5.85−4.91i)T+(3.99+22.6i)T2 |
| 29 | 1+(5.09+0.898i)T+(27.2+9.91i)T2 |
| 31 | 1+(5.06+8.76i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−4.14+2.39i)T+(18.5−32.0i)T2 |
| 41 | 1+(−2.63+2.21i)T+(7.11−40.3i)T2 |
| 43 | 1+(9.94+3.61i)T+(32.9+27.6i)T2 |
| 47 | 1+(1.22+3.37i)T+(−36.0+30.2i)T2 |
| 53 | 1+(1.53+0.270i)T+(49.8+18.1i)T2 |
| 59 | 1+(8.34+3.03i)T+(45.1+37.9i)T2 |
| 61 | 1+(−5.16+6.16i)T+(−10.5−60.0i)T2 |
| 67 | 1+(1.41−1.68i)T+(−11.6−65.9i)T2 |
| 71 | 1+(1.65−4.53i)T+(−54.3−45.6i)T2 |
| 73 | 1+(−1.88+0.332i)T+(68.5−24.9i)T2 |
| 79 | 1+(4.67−12.8i)T+(−60.5−50.7i)T2 |
| 83 | 1+(10.3+5.95i)T+(41.5+71.8i)T2 |
| 89 | 1+(2.43−13.7i)T+(−83.6−30.4i)T2 |
| 97 | 1+(−0.732−4.15i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.03326734451756459753232807516, −9.643458672065517249716765908901, −8.987127836731877913481372515856, −8.085314729257364477453175956209, −6.95146244160962615000827990707, −6.10107850914392689410194012127, −5.49936464160248222723824297302, −4.05384203982370486033786721443, −2.05481628680848780263520441987, −1.58353266323813960664603986168,
1.54506033713819144577373520171, 3.15676249078125557146096023230, 4.45261931934496136301975884146, 5.16609695802949302334456938075, 6.22318585910730286915191184872, 7.21918210193565470085658648903, 8.551433221435037472924400780547, 9.300566967942060095065358443632, 10.27854031289025364069814545798, 10.71205138937984194891926500349