L(s) = 1 | + (−0.317 − 1.79i)3-s + (2.76 − 0.487i)5-s + (1.96 + 1.76i)7-s + (−0.312 + 0.113i)9-s + 0.787·11-s + (3.33 + 2.79i)13-s + (−1.75 − 4.82i)15-s + (−1.10 + 3.04i)17-s + (−4.35 + 0.199i)19-s + (2.55 − 4.09i)21-s + (5.85 + 4.91i)23-s + (2.72 − 0.990i)25-s + (−2.43 − 4.21i)27-s + (−5.09 − 0.898i)29-s + (−5.06 − 8.76i)31-s + ⋯ |
L(s) = 1 | + (−0.183 − 1.03i)3-s + (1.23 − 0.218i)5-s + (0.743 + 0.668i)7-s + (−0.104 + 0.0379i)9-s + 0.237·11-s + (0.924 + 0.776i)13-s + (−0.453 − 1.24i)15-s + (−0.268 + 0.738i)17-s + (−0.998 + 0.0458i)19-s + (0.557 − 0.894i)21-s + (1.22 + 1.02i)23-s + (0.544 − 0.198i)25-s + (−0.468 − 0.811i)27-s + (−0.946 − 0.166i)29-s + (−0.908 − 1.57i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.757 + 0.652i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.757 + 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75020 - 0.649943i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75020 - 0.649943i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.96 - 1.76i)T \) |
| 19 | \( 1 + (4.35 - 0.199i)T \) |
good | 3 | \( 1 + (0.317 + 1.79i)T + (-2.81 + 1.02i)T^{2} \) |
| 5 | \( 1 + (-2.76 + 0.487i)T + (4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 - 0.787T + 11T^{2} \) |
| 13 | \( 1 + (-3.33 - 2.79i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (1.10 - 3.04i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (-5.85 - 4.91i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (5.09 + 0.898i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (5.06 + 8.76i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.14 + 2.39i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.63 + 2.21i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (9.94 + 3.61i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (1.22 + 3.37i)T + (-36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (1.53 + 0.270i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (8.34 + 3.03i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-5.16 + 6.16i)T + (-10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (1.41 - 1.68i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (1.65 - 4.53i)T + (-54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (-1.88 + 0.332i)T + (68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (4.67 - 12.8i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (10.3 + 5.95i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.43 - 13.7i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (-0.732 - 4.15i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03326734451756459753232807516, −9.643458672065517249716765908901, −8.987127836731877913481372515856, −8.085314729257364477453175956209, −6.95146244160962615000827990707, −6.10107850914392689410194012127, −5.49936464160248222723824297302, −4.05384203982370486033786721443, −2.05481628680848780263520441987, −1.58353266323813960664603986168,
1.54506033713819144577373520171, 3.15676249078125557146096023230, 4.45261931934496136301975884146, 5.16609695802949302334456938075, 6.22318585910730286915191184872, 7.21918210193565470085658648903, 8.551433221435037472924400780547, 9.300566967942060095065358443632, 10.27854031289025364069814545798, 10.71205138937984194891926500349