L(s) = 1 | + (0.5 − 0.866i)5-s + 7-s + (−0.5 + 0.866i)9-s + (−1 − 1.73i)11-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (0.5 − 0.866i)35-s − 43-s + (0.499 + 0.866i)45-s + (−1 + 1.73i)47-s + 49-s − 1.99·55-s + (−1 + 1.73i)61-s + (−0.5 + 0.866i)63-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)5-s + 7-s + (−0.5 + 0.866i)9-s + (−1 − 1.73i)11-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (0.5 − 0.866i)35-s − 43-s + (0.499 + 0.866i)45-s + (−1 + 1.73i)47-s + 49-s − 1.99·55-s + (−1 + 1.73i)61-s + (−0.5 + 0.866i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 532 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9773239855\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9773239855\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80586181852080632349541324149, −10.43417693083198184373789194958, −8.918145196570350113020173579221, −8.297768829904437201319863794593, −7.84483887038179014517738524124, −6.02470916889726814118017157017, −5.44669032102847998337813284477, −4.57714236045013349233443617036, −2.97858536469963990867659022587, −1.54675859337263129998469221624,
2.02971190226874062559952940153, 3.07235717316408020694215280717, 4.66490704319140395632118686786, 5.43626596634302760288955360460, 6.77891612716172954239535247220, 7.33882750159943203159656852194, 8.431050937786117325797763253107, 9.564291806996441187246636934588, 10.16644384465903336371900381510, 11.13959054975195862916308810271