L(s) = 1 | + (0.5 − 0.866i)5-s + 7-s + (−0.5 + 0.866i)9-s + (−1 − 1.73i)11-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (0.5 − 0.866i)35-s − 43-s + (0.499 + 0.866i)45-s + (−1 + 1.73i)47-s + 49-s − 1.99·55-s + (−1 + 1.73i)61-s + (−0.5 + 0.866i)63-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)5-s + 7-s + (−0.5 + 0.866i)9-s + (−1 − 1.73i)11-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s + (0.5 − 0.866i)23-s + (0.5 − 0.866i)35-s − 43-s + (0.499 + 0.866i)45-s + (−1 + 1.73i)47-s + 49-s − 1.99·55-s + (−1 + 1.73i)61-s + (−0.5 + 0.866i)63-s + ⋯ |
Λ(s)=(=(532s/2ΓC(s)L(s)(0.895+0.444i)Λ(1−s)
Λ(s)=(=(532s/2ΓC(s)L(s)(0.895+0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
532
= 22⋅7⋅19
|
Sign: |
0.895+0.444i
|
Analytic conductor: |
0.265502 |
Root analytic conductor: |
0.515269 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ532(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 532, ( :0), 0.895+0.444i)
|
Particular Values
L(21) |
≈ |
0.9773239855 |
L(21) |
≈ |
0.9773239855 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 19 | 1+(0.5−0.866i)T |
good | 3 | 1+(0.5−0.866i)T2 |
| 5 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+T+T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80586181852080632349541324149, −10.43417693083198184373789194958, −8.918145196570350113020173579221, −8.297768829904437201319863794593, −7.84483887038179014517738524124, −6.02470916889726814118017157017, −5.44669032102847998337813284477, −4.57714236045013349233443617036, −2.97858536469963990867659022587, −1.54675859337263129998469221624,
2.02971190226874062559952940153, 3.07235717316408020694215280717, 4.66490704319140395632118686786, 5.43626596634302760288955360460, 6.77891612716172954239535247220, 7.33882750159943203159656852194, 8.431050937786117325797763253107, 9.564291806996441187246636934588, 10.16644384465903336371900381510, 11.13959054975195862916308810271