Properties

Label 2-5376-1.1-c1-0-12
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 1.29·5-s − 7-s + 9-s − 5.01·11-s + 3.71·13-s − 1.29·15-s − 4.41·17-s − 7.71·19-s + 21-s + 2.41·23-s − 3.31·25-s − 27-s − 7.71·29-s − 3.71·31-s + 5.01·33-s − 1.29·35-s + 10.3·37-s − 3.71·39-s + 11.0·41-s + 2.59·43-s + 1.29·45-s + 10.0·47-s + 49-s + 4.41·51-s + 10.3·53-s − 6.51·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.581·5-s − 0.377·7-s + 0.333·9-s − 1.51·11-s + 1.02·13-s − 0.335·15-s − 1.07·17-s − 1.76·19-s + 0.218·21-s + 0.502·23-s − 0.662·25-s − 0.192·27-s − 1.43·29-s − 0.666·31-s + 0.872·33-s − 0.219·35-s + 1.69·37-s − 0.594·39-s + 1.71·41-s + 0.396·43-s + 0.193·45-s + 1.46·47-s + 0.142·49-s + 0.617·51-s + 1.41·53-s − 0.878·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.120843328\)
\(L(\frac12)\) \(\approx\) \(1.120843328\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
good5 \( 1 - 1.29T + 5T^{2} \)
11 \( 1 + 5.01T + 11T^{2} \)
13 \( 1 - 3.71T + 13T^{2} \)
17 \( 1 + 4.41T + 17T^{2} \)
19 \( 1 + 7.71T + 19T^{2} \)
23 \( 1 - 2.41T + 23T^{2} \)
29 \( 1 + 7.71T + 29T^{2} \)
31 \( 1 + 3.71T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 - 11.0T + 41T^{2} \)
43 \( 1 - 2.59T + 43T^{2} \)
47 \( 1 - 10.0T + 47T^{2} \)
53 \( 1 - 10.3T + 53T^{2} \)
59 \( 1 - 8.82T + 59T^{2} \)
61 \( 1 + 9.11T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 7.61T + 71T^{2} \)
73 \( 1 - 12.5T + 73T^{2} \)
79 \( 1 - 10.5T + 79T^{2} \)
83 \( 1 - 9.19T + 83T^{2} \)
89 \( 1 - 4.98T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.120414342847235928699442399508, −7.43532671078756032548172752359, −6.60089970207422828455165620538, −5.82965249470624082967503989763, −5.63785801483813711219700072779, −4.44884574885318322983372522256, −3.90980681963584909931578882811, −2.57088737417535729235426554899, −2.04036864979100301169130415702, −0.55983061597845957113495575515, 0.55983061597845957113495575515, 2.04036864979100301169130415702, 2.57088737417535729235426554899, 3.90980681963584909931578882811, 4.44884574885318322983372522256, 5.63785801483813711219700072779, 5.82965249470624082967503989763, 6.60089970207422828455165620538, 7.43532671078756032548172752359, 8.120414342847235928699442399508

Graph of the $Z$-function along the critical line