L(s) = 1 | + 3-s − 0.922·5-s + 7-s + 9-s + 0.382·11-s − 4.13·13-s − 0.922·15-s − 7.05·17-s − 1.30·19-s + 21-s − 2.44·23-s − 4.14·25-s + 27-s + 5.30·29-s + 10.9·31-s + 0.382·33-s − 0.922·35-s + 10.1·37-s − 4.13·39-s − 4.44·41-s − 0.983·43-s − 0.922·45-s + 7.50·47-s + 49-s − 7.05·51-s + 7.14·53-s − 0.352·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.412·5-s + 0.377·7-s + 0.333·9-s + 0.115·11-s − 1.14·13-s − 0.238·15-s − 1.71·17-s − 0.299·19-s + 0.218·21-s − 0.510·23-s − 0.829·25-s + 0.192·27-s + 0.985·29-s + 1.96·31-s + 0.0665·33-s − 0.155·35-s + 1.67·37-s − 0.661·39-s − 0.694·41-s − 0.150·43-s − 0.137·45-s + 1.09·47-s + 0.142·49-s − 0.987·51-s + 0.982·53-s − 0.0475·55-s + ⋯ |
Λ(s)=(=(5376s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5376s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.985670496 |
L(21) |
≈ |
1.985670496 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1−T |
good | 5 | 1+0.922T+5T2 |
| 11 | 1−0.382T+11T2 |
| 13 | 1+4.13T+13T2 |
| 17 | 1+7.05T+17T2 |
| 19 | 1+1.30T+19T2 |
| 23 | 1+2.44T+23T2 |
| 29 | 1−5.30T+29T2 |
| 31 | 1−10.9T+31T2 |
| 37 | 1−10.1T+37T2 |
| 41 | 1+4.44T+41T2 |
| 43 | 1+0.983T+43T2 |
| 47 | 1−7.50T+47T2 |
| 53 | 1−7.14T+53T2 |
| 59 | 1−11.5T+59T2 |
| 61 | 1−8.32T+61T2 |
| 67 | 1−6.51T+67T2 |
| 71 | 1+8.86T+71T2 |
| 73 | 1−9.50T+73T2 |
| 79 | 1−3.81T+79T2 |
| 83 | 1−12.2T+83T2 |
| 89 | 1−5.97T+89T2 |
| 97 | 1−4.42T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.247005579688466412410870419581, −7.57441147352036106096565269702, −6.80805189428463985011461315822, −6.21711672567293166425383732736, −5.03132343017723624145589833957, −4.41991128955583620286566928089, −3.86093293540110797451626506464, −2.53199765661831315403738181698, −2.24644370940313937654102794808, −0.71635797505961202000738950155,
0.71635797505961202000738950155, 2.24644370940313937654102794808, 2.53199765661831315403738181698, 3.86093293540110797451626506464, 4.41991128955583620286566928089, 5.03132343017723624145589833957, 6.21711672567293166425383732736, 6.80805189428463985011461315822, 7.57441147352036106096565269702, 8.247005579688466412410870419581