Properties

Label 2-5376-1.1-c1-0-20
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 0.922·5-s + 7-s + 9-s + 0.382·11-s − 4.13·13-s − 0.922·15-s − 7.05·17-s − 1.30·19-s + 21-s − 2.44·23-s − 4.14·25-s + 27-s + 5.30·29-s + 10.9·31-s + 0.382·33-s − 0.922·35-s + 10.1·37-s − 4.13·39-s − 4.44·41-s − 0.983·43-s − 0.922·45-s + 7.50·47-s + 49-s − 7.05·51-s + 7.14·53-s − 0.352·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.412·5-s + 0.377·7-s + 0.333·9-s + 0.115·11-s − 1.14·13-s − 0.238·15-s − 1.71·17-s − 0.299·19-s + 0.218·21-s − 0.510·23-s − 0.829·25-s + 0.192·27-s + 0.985·29-s + 1.96·31-s + 0.0665·33-s − 0.155·35-s + 1.67·37-s − 0.661·39-s − 0.694·41-s − 0.150·43-s − 0.137·45-s + 1.09·47-s + 0.142·49-s − 0.987·51-s + 0.982·53-s − 0.0475·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.985670496\)
\(L(\frac12)\) \(\approx\) \(1.985670496\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
good5 \( 1 + 0.922T + 5T^{2} \)
11 \( 1 - 0.382T + 11T^{2} \)
13 \( 1 + 4.13T + 13T^{2} \)
17 \( 1 + 7.05T + 17T^{2} \)
19 \( 1 + 1.30T + 19T^{2} \)
23 \( 1 + 2.44T + 23T^{2} \)
29 \( 1 - 5.30T + 29T^{2} \)
31 \( 1 - 10.9T + 31T^{2} \)
37 \( 1 - 10.1T + 37T^{2} \)
41 \( 1 + 4.44T + 41T^{2} \)
43 \( 1 + 0.983T + 43T^{2} \)
47 \( 1 - 7.50T + 47T^{2} \)
53 \( 1 - 7.14T + 53T^{2} \)
59 \( 1 - 11.5T + 59T^{2} \)
61 \( 1 - 8.32T + 61T^{2} \)
67 \( 1 - 6.51T + 67T^{2} \)
71 \( 1 + 8.86T + 71T^{2} \)
73 \( 1 - 9.50T + 73T^{2} \)
79 \( 1 - 3.81T + 79T^{2} \)
83 \( 1 - 12.2T + 83T^{2} \)
89 \( 1 - 5.97T + 89T^{2} \)
97 \( 1 - 4.42T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.247005579688466412410870419581, −7.57441147352036106096565269702, −6.80805189428463985011461315822, −6.21711672567293166425383732736, −5.03132343017723624145589833957, −4.41991128955583620286566928089, −3.86093293540110797451626506464, −2.53199765661831315403738181698, −2.24644370940313937654102794808, −0.71635797505961202000738950155, 0.71635797505961202000738950155, 2.24644370940313937654102794808, 2.53199765661831315403738181698, 3.86093293540110797451626506464, 4.41991128955583620286566928089, 5.03132343017723624145589833957, 6.21711672567293166425383732736, 6.80805189428463985011461315822, 7.57441147352036106096565269702, 8.247005579688466412410870419581

Graph of the $Z$-function along the critical line