Properties

Label 2-5376-1.1-c1-0-28
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.44·5-s + 7-s + 9-s − 4.44·11-s + 2.89·13-s − 2.44·15-s + 6.44·17-s − 2.89·19-s − 21-s + 0.449·23-s + 0.999·25-s − 27-s + 2.89·29-s + 6.89·31-s + 4.44·33-s + 2.44·35-s + 2·37-s − 2.89·39-s − 7.34·41-s − 3.10·43-s + 2.44·45-s − 0.898·47-s + 49-s − 6.44·51-s + 10·53-s − 10.8·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.09·5-s + 0.377·7-s + 0.333·9-s − 1.34·11-s + 0.804·13-s − 0.632·15-s + 1.56·17-s − 0.665·19-s − 0.218·21-s + 0.0937·23-s + 0.199·25-s − 0.192·27-s + 0.538·29-s + 1.23·31-s + 0.774·33-s + 0.414·35-s + 0.328·37-s − 0.464·39-s − 1.14·41-s − 0.472·43-s + 0.365·45-s − 0.131·47-s + 0.142·49-s − 0.903·51-s + 1.37·53-s − 1.46·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.124147410\)
\(L(\frac12)\) \(\approx\) \(2.124147410\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
good5 \( 1 - 2.44T + 5T^{2} \)
11 \( 1 + 4.44T + 11T^{2} \)
13 \( 1 - 2.89T + 13T^{2} \)
17 \( 1 - 6.44T + 17T^{2} \)
19 \( 1 + 2.89T + 19T^{2} \)
23 \( 1 - 0.449T + 23T^{2} \)
29 \( 1 - 2.89T + 29T^{2} \)
31 \( 1 - 6.89T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 7.34T + 41T^{2} \)
43 \( 1 + 3.10T + 43T^{2} \)
47 \( 1 + 0.898T + 47T^{2} \)
53 \( 1 - 10T + 53T^{2} \)
59 \( 1 + 4.89T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 9.79T + 67T^{2} \)
71 \( 1 - 9.34T + 71T^{2} \)
73 \( 1 + 10.8T + 73T^{2} \)
79 \( 1 - 12.8T + 79T^{2} \)
83 \( 1 - 5.79T + 83T^{2} \)
89 \( 1 - 7.34T + 89T^{2} \)
97 \( 1 - 5.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.125729616692856629127428231228, −7.55007030563806169005130121214, −6.46393892779863554127241669718, −6.03793394555653502998608530406, −5.26105147032306915020766840440, −4.87035716802883538706812606349, −3.67581315931513537494532436974, −2.70947110218877003576729846505, −1.81725476195762217407518451970, −0.834368080654622395164969259254, 0.834368080654622395164969259254, 1.81725476195762217407518451970, 2.70947110218877003576729846505, 3.67581315931513537494532436974, 4.87035716802883538706812606349, 5.26105147032306915020766840440, 6.03793394555653502998608530406, 6.46393892779863554127241669718, 7.55007030563806169005130121214, 8.125729616692856629127428231228

Graph of the $Z$-function along the critical line