L(s) = 1 | − 3-s + 2.44·5-s + 7-s + 9-s − 4.44·11-s + 2.89·13-s − 2.44·15-s + 6.44·17-s − 2.89·19-s − 21-s + 0.449·23-s + 0.999·25-s − 27-s + 2.89·29-s + 6.89·31-s + 4.44·33-s + 2.44·35-s + 2·37-s − 2.89·39-s − 7.34·41-s − 3.10·43-s + 2.44·45-s − 0.898·47-s + 49-s − 6.44·51-s + 10·53-s − 10.8·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.09·5-s + 0.377·7-s + 0.333·9-s − 1.34·11-s + 0.804·13-s − 0.632·15-s + 1.56·17-s − 0.665·19-s − 0.218·21-s + 0.0937·23-s + 0.199·25-s − 0.192·27-s + 0.538·29-s + 1.23·31-s + 0.774·33-s + 0.414·35-s + 0.328·37-s − 0.464·39-s − 1.14·41-s − 0.472·43-s + 0.365·45-s − 0.131·47-s + 0.142·49-s − 0.903·51-s + 1.37·53-s − 1.46·55-s + ⋯ |
Λ(s)=(=(5376s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5376s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.124147410 |
L(21) |
≈ |
2.124147410 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 7 | 1−T |
good | 5 | 1−2.44T+5T2 |
| 11 | 1+4.44T+11T2 |
| 13 | 1−2.89T+13T2 |
| 17 | 1−6.44T+17T2 |
| 19 | 1+2.89T+19T2 |
| 23 | 1−0.449T+23T2 |
| 29 | 1−2.89T+29T2 |
| 31 | 1−6.89T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+7.34T+41T2 |
| 43 | 1+3.10T+43T2 |
| 47 | 1+0.898T+47T2 |
| 53 | 1−10T+53T2 |
| 59 | 1+4.89T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1−9.79T+67T2 |
| 71 | 1−9.34T+71T2 |
| 73 | 1+10.8T+73T2 |
| 79 | 1−12.8T+79T2 |
| 83 | 1−5.79T+83T2 |
| 89 | 1−7.34T+89T2 |
| 97 | 1−5.10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.125729616692856629127428231228, −7.55007030563806169005130121214, −6.46393892779863554127241669718, −6.03793394555653502998608530406, −5.26105147032306915020766840440, −4.87035716802883538706812606349, −3.67581315931513537494532436974, −2.70947110218877003576729846505, −1.81725476195762217407518451970, −0.834368080654622395164969259254,
0.834368080654622395164969259254, 1.81725476195762217407518451970, 2.70947110218877003576729846505, 3.67581315931513537494532436974, 4.87035716802883538706812606349, 5.26105147032306915020766840440, 6.03793394555653502998608530406, 6.46393892779863554127241669718, 7.55007030563806169005130121214, 8.125729616692856629127428231228