Properties

Label 2-5376-1.1-c1-0-32
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 0.732·5-s − 7-s + 9-s + 4.19·11-s + 0.732·15-s − 1.26·17-s − 7.46·19-s − 21-s + 8.73·23-s − 4.46·25-s + 27-s + 3.46·29-s − 4.92·31-s + 4.19·33-s − 0.732·35-s + 10·37-s − 1.26·41-s + 0.928·43-s + 0.732·45-s + 6.92·47-s + 49-s − 1.26·51-s + 3.46·53-s + 3.07·55-s − 7.46·57-s + 10.9·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.327·5-s − 0.377·7-s + 0.333·9-s + 1.26·11-s + 0.189·15-s − 0.307·17-s − 1.71·19-s − 0.218·21-s + 1.82·23-s − 0.892·25-s + 0.192·27-s + 0.643·29-s − 0.885·31-s + 0.730·33-s − 0.123·35-s + 1.64·37-s − 0.198·41-s + 0.141·43-s + 0.109·45-s + 1.01·47-s + 0.142·49-s − 0.177·51-s + 0.475·53-s + 0.414·55-s − 0.988·57-s + 1.42·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.721548906\)
\(L(\frac12)\) \(\approx\) \(2.721548906\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
good5 \( 1 - 0.732T + 5T^{2} \)
11 \( 1 - 4.19T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 1.26T + 17T^{2} \)
19 \( 1 + 7.46T + 19T^{2} \)
23 \( 1 - 8.73T + 23T^{2} \)
29 \( 1 - 3.46T + 29T^{2} \)
31 \( 1 + 4.92T + 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
41 \( 1 + 1.26T + 41T^{2} \)
43 \( 1 - 0.928T + 43T^{2} \)
47 \( 1 - 6.92T + 47T^{2} \)
53 \( 1 - 3.46T + 53T^{2} \)
59 \( 1 - 10.9T + 59T^{2} \)
61 \( 1 - 1.46T + 61T^{2} \)
67 \( 1 - 7.46T + 67T^{2} \)
71 \( 1 - 14.1T + 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 - 9.46T + 79T^{2} \)
83 \( 1 + 8.39T + 83T^{2} \)
89 \( 1 - 1.26T + 89T^{2} \)
97 \( 1 - 6.39T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.376240015135890807307314059851, −7.38561352211010917423906586039, −6.69213780448247960070151225424, −6.25179625482481576241879389631, −5.28200897054093502751754310643, −4.24488603290357350864706653370, −3.82152617405076016790866812527, −2.73613962062443313741311136127, −2.00821155542493407239049129768, −0.882213172867133979406920798167, 0.882213172867133979406920798167, 2.00821155542493407239049129768, 2.73613962062443313741311136127, 3.82152617405076016790866812527, 4.24488603290357350864706653370, 5.28200897054093502751754310643, 6.25179625482481576241879389631, 6.69213780448247960070151225424, 7.38561352211010917423906586039, 8.376240015135890807307314059851

Graph of the $Z$-function along the critical line