L(s) = 1 | + 3-s + 0.732·5-s − 7-s + 9-s + 4.19·11-s + 0.732·15-s − 1.26·17-s − 7.46·19-s − 21-s + 8.73·23-s − 4.46·25-s + 27-s + 3.46·29-s − 4.92·31-s + 4.19·33-s − 0.732·35-s + 10·37-s − 1.26·41-s + 0.928·43-s + 0.732·45-s + 6.92·47-s + 49-s − 1.26·51-s + 3.46·53-s + 3.07·55-s − 7.46·57-s + 10.9·59-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.327·5-s − 0.377·7-s + 0.333·9-s + 1.26·11-s + 0.189·15-s − 0.307·17-s − 1.71·19-s − 0.218·21-s + 1.82·23-s − 0.892·25-s + 0.192·27-s + 0.643·29-s − 0.885·31-s + 0.730·33-s − 0.123·35-s + 1.64·37-s − 0.198·41-s + 0.141·43-s + 0.109·45-s + 1.01·47-s + 0.142·49-s − 0.177·51-s + 0.475·53-s + 0.414·55-s − 0.988·57-s + 1.42·59-s + ⋯ |
Λ(s)=(=(5376s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5376s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.721548906 |
L(21) |
≈ |
2.721548906 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1+T |
good | 5 | 1−0.732T+5T2 |
| 11 | 1−4.19T+11T2 |
| 13 | 1+13T2 |
| 17 | 1+1.26T+17T2 |
| 19 | 1+7.46T+19T2 |
| 23 | 1−8.73T+23T2 |
| 29 | 1−3.46T+29T2 |
| 31 | 1+4.92T+31T2 |
| 37 | 1−10T+37T2 |
| 41 | 1+1.26T+41T2 |
| 43 | 1−0.928T+43T2 |
| 47 | 1−6.92T+47T2 |
| 53 | 1−3.46T+53T2 |
| 59 | 1−10.9T+59T2 |
| 61 | 1−1.46T+61T2 |
| 67 | 1−7.46T+67T2 |
| 71 | 1−14.1T+71T2 |
| 73 | 1+10.3T+73T2 |
| 79 | 1−9.46T+79T2 |
| 83 | 1+8.39T+83T2 |
| 89 | 1−1.26T+89T2 |
| 97 | 1−6.39T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.376240015135890807307314059851, −7.38561352211010917423906586039, −6.69213780448247960070151225424, −6.25179625482481576241879389631, −5.28200897054093502751754310643, −4.24488603290357350864706653370, −3.82152617405076016790866812527, −2.73613962062443313741311136127, −2.00821155542493407239049129768, −0.882213172867133979406920798167,
0.882213172867133979406920798167, 2.00821155542493407239049129768, 2.73613962062443313741311136127, 3.82152617405076016790866812527, 4.24488603290357350864706653370, 5.28200897054093502751754310643, 6.25179625482481576241879389631, 6.69213780448247960070151225424, 7.38561352211010917423906586039, 8.376240015135890807307314059851