Properties

Label 2-5376-1.1-c1-0-33
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.73·5-s − 7-s + 9-s + 6.19·11-s − 2.73·15-s − 4.73·17-s + 0.535·19-s + 21-s + 5.26·23-s + 2.46·25-s − 27-s + 3.46·29-s + 8.92·31-s − 6.19·33-s − 2.73·35-s − 10·37-s − 4.73·41-s + 12.9·43-s + 2.73·45-s − 6.92·47-s + 49-s + 4.73·51-s + 3.46·53-s + 16.9·55-s − 0.535·57-s + 2.92·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.22·5-s − 0.377·7-s + 0.333·9-s + 1.86·11-s − 0.705·15-s − 1.14·17-s + 0.122·19-s + 0.218·21-s + 1.09·23-s + 0.492·25-s − 0.192·27-s + 0.643·29-s + 1.60·31-s − 1.07·33-s − 0.461·35-s − 1.64·37-s − 0.739·41-s + 1.97·43-s + 0.407·45-s − 1.01·47-s + 0.142·49-s + 0.662·51-s + 0.475·53-s + 2.28·55-s − 0.0709·57-s + 0.381·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.316994573\)
\(L(\frac12)\) \(\approx\) \(2.316994573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
good5 \( 1 - 2.73T + 5T^{2} \)
11 \( 1 - 6.19T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 4.73T + 17T^{2} \)
19 \( 1 - 0.535T + 19T^{2} \)
23 \( 1 - 5.26T + 23T^{2} \)
29 \( 1 - 3.46T + 29T^{2} \)
31 \( 1 - 8.92T + 31T^{2} \)
37 \( 1 + 10T + 37T^{2} \)
41 \( 1 + 4.73T + 41T^{2} \)
43 \( 1 - 12.9T + 43T^{2} \)
47 \( 1 + 6.92T + 47T^{2} \)
53 \( 1 - 3.46T + 53T^{2} \)
59 \( 1 - 2.92T + 59T^{2} \)
61 \( 1 - 5.46T + 61T^{2} \)
67 \( 1 + 0.535T + 67T^{2} \)
71 \( 1 - 3.80T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 - 2.53T + 79T^{2} \)
83 \( 1 + 12.3T + 83T^{2} \)
89 \( 1 - 4.73T + 89T^{2} \)
97 \( 1 + 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.418127817264308191447454230740, −6.97043628321764978688023785594, −6.70509081619637486826052883013, −6.17416885115101496306723764960, −5.37308166137076779118576626552, −4.58667583527359396900236784806, −3.80418767014071736899528645652, −2.71992682841692787760051066851, −1.74307990653100790705285033155, −0.897847906683673217973501594445, 0.897847906683673217973501594445, 1.74307990653100790705285033155, 2.71992682841692787760051066851, 3.80418767014071736899528645652, 4.58667583527359396900236784806, 5.37308166137076779118576626552, 6.17416885115101496306723764960, 6.70509081619637486826052883013, 6.97043628321764978688023785594, 8.418127817264308191447454230740

Graph of the $Z$-function along the critical line