Properties

Label 2-5376-1.1-c1-0-4
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4.21·5-s + 7-s + 9-s − 5.57·11-s − 1.35·13-s − 4.21·15-s − 4.86·17-s + 2.64·19-s + 21-s − 2.86·23-s + 12.7·25-s + 27-s − 2.64·29-s − 1.35·31-s − 5.57·33-s − 4.21·35-s − 5.79·37-s − 1.35·39-s + 0.425·41-s + 8.43·43-s − 4.21·45-s + 11.1·47-s + 49-s − 4.86·51-s − 5.79·53-s + 23.5·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.88·5-s + 0.377·7-s + 0.333·9-s − 1.68·11-s − 0.376·13-s − 1.08·15-s − 1.17·17-s + 0.606·19-s + 0.218·21-s − 0.596·23-s + 2.55·25-s + 0.192·27-s − 0.490·29-s − 0.243·31-s − 0.970·33-s − 0.713·35-s − 0.952·37-s − 0.217·39-s + 0.0663·41-s + 1.28·43-s − 0.628·45-s + 1.62·47-s + 0.142·49-s − 0.680·51-s − 0.795·53-s + 3.17·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8697474046\)
\(L(\frac12)\) \(\approx\) \(0.8697474046\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
good5 \( 1 + 4.21T + 5T^{2} \)
11 \( 1 + 5.57T + 11T^{2} \)
13 \( 1 + 1.35T + 13T^{2} \)
17 \( 1 + 4.86T + 17T^{2} \)
19 \( 1 - 2.64T + 19T^{2} \)
23 \( 1 + 2.86T + 23T^{2} \)
29 \( 1 + 2.64T + 29T^{2} \)
31 \( 1 + 1.35T + 31T^{2} \)
37 \( 1 + 5.79T + 37T^{2} \)
41 \( 1 - 0.425T + 41T^{2} \)
43 \( 1 - 8.43T + 43T^{2} \)
47 \( 1 - 11.1T + 47T^{2} \)
53 \( 1 + 5.79T + 53T^{2} \)
59 \( 1 + 9.72T + 59T^{2} \)
61 \( 1 + 15.0T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 14.0T + 71T^{2} \)
73 \( 1 - 1.56T + 73T^{2} \)
79 \( 1 - 0.436T + 79T^{2} \)
83 \( 1 - 12.8T + 83T^{2} \)
89 \( 1 - 15.5T + 89T^{2} \)
97 \( 1 - 9.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.997133171861454623564215165468, −7.49072714701430459571510315956, −7.31383728113386947948984938495, −6.03217638130432095758600373888, −4.91335883820452824524937189607, −4.53740689263379891385435165636, −3.65534848475923715054724500159, −2.94397358118513562923130696792, −2.08339744454559113826202527035, −0.46154861675791770967768661077, 0.46154861675791770967768661077, 2.08339744454559113826202527035, 2.94397358118513562923130696792, 3.65534848475923715054724500159, 4.53740689263379891385435165636, 4.91335883820452824524937189607, 6.03217638130432095758600373888, 7.31383728113386947948984938495, 7.49072714701430459571510315956, 7.997133171861454623564215165468

Graph of the $Z$-function along the critical line