Properties

Label 2-5376-1.1-c1-0-41
Degree $2$
Conductor $5376$
Sign $-1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4.10·5-s + 7-s + 9-s − 2.67·11-s − 3.02·13-s + 4.10·15-s − 5.12·17-s + 2.78·19-s − 21-s + 7.12·23-s + 11.8·25-s − 27-s + 8.83·29-s + 1.42·31-s + 2.67·33-s − 4.10·35-s + 1.42·37-s + 3.02·39-s − 5.12·41-s − 2.39·43-s − 4.10·45-s + 9.56·47-s + 49-s + 5.12·51-s − 2.78·53-s + 10.9·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.83·5-s + 0.377·7-s + 0.333·9-s − 0.807·11-s − 0.838·13-s + 1.05·15-s − 1.24·17-s + 0.637·19-s − 0.218·21-s + 1.48·23-s + 2.36·25-s − 0.192·27-s + 1.63·29-s + 0.255·31-s + 0.466·33-s − 0.693·35-s + 0.234·37-s + 0.484·39-s − 0.800·41-s − 0.365·43-s − 0.611·45-s + 1.39·47-s + 0.142·49-s + 0.717·51-s − 0.381·53-s + 1.48·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
good5 \( 1 + 4.10T + 5T^{2} \)
11 \( 1 + 2.67T + 11T^{2} \)
13 \( 1 + 3.02T + 13T^{2} \)
17 \( 1 + 5.12T + 17T^{2} \)
19 \( 1 - 2.78T + 19T^{2} \)
23 \( 1 - 7.12T + 23T^{2} \)
29 \( 1 - 8.83T + 29T^{2} \)
31 \( 1 - 1.42T + 31T^{2} \)
37 \( 1 - 1.42T + 37T^{2} \)
41 \( 1 + 5.12T + 41T^{2} \)
43 \( 1 + 2.39T + 43T^{2} \)
47 \( 1 - 9.56T + 47T^{2} \)
53 \( 1 + 2.78T + 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 - 5.17T + 61T^{2} \)
67 \( 1 + 0.244T + 67T^{2} \)
71 \( 1 + 4.27T + 71T^{2} \)
73 \( 1 - 4.15T + 73T^{2} \)
79 \( 1 + 6.25T + 79T^{2} \)
83 \( 1 + 9.35T + 83T^{2} \)
89 \( 1 + 11.2T + 89T^{2} \)
97 \( 1 - 6.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73525556676813909366262227331, −7.13551161482870853532793760031, −6.69046904098119812286592217586, −5.42103868544098599096451669320, −4.67181693767290745726557612868, −4.44931882613903435220505023683, −3.27881814153360258795933919503, −2.56033683328850313102071897212, −0.968094808643267249743844037179, 0, 0.968094808643267249743844037179, 2.56033683328850313102071897212, 3.27881814153360258795933919503, 4.44931882613903435220505023683, 4.67181693767290745726557612868, 5.42103868544098599096451669320, 6.69046904098119812286592217586, 7.13551161482870853532793760031, 7.73525556676813909366262227331

Graph of the $Z$-function along the critical line