L(s) = 1 | − 3-s + 2.44·5-s − 7-s + 9-s + 0.449·11-s + 6.89·13-s − 2.44·15-s + 1.55·17-s + 6.89·19-s + 21-s + 4.44·23-s + 0.999·25-s − 27-s + 6.89·29-s + 2.89·31-s − 0.449·33-s − 2.44·35-s − 2·37-s − 6.89·39-s + 7.34·41-s − 12.8·43-s + 2.44·45-s − 8.89·47-s + 49-s − 1.55·51-s − 10·53-s + 1.10·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.09·5-s − 0.377·7-s + 0.333·9-s + 0.135·11-s + 1.91·13-s − 0.632·15-s + 0.376·17-s + 1.58·19-s + 0.218·21-s + 0.927·23-s + 0.199·25-s − 0.192·27-s + 1.28·29-s + 0.520·31-s − 0.0782·33-s − 0.414·35-s − 0.328·37-s − 1.10·39-s + 1.14·41-s − 1.96·43-s + 0.365·45-s − 1.29·47-s + 0.142·49-s − 0.217·51-s − 1.37·53-s + 0.148·55-s + ⋯ |
Λ(s)=(=(5376s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5376s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.466446556 |
L(21) |
≈ |
2.466446556 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 7 | 1+T |
good | 5 | 1−2.44T+5T2 |
| 11 | 1−0.449T+11T2 |
| 13 | 1−6.89T+13T2 |
| 17 | 1−1.55T+17T2 |
| 19 | 1−6.89T+19T2 |
| 23 | 1−4.44T+23T2 |
| 29 | 1−6.89T+29T2 |
| 31 | 1−2.89T+31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1−7.34T+41T2 |
| 43 | 1+12.8T+43T2 |
| 47 | 1+8.89T+47T2 |
| 53 | 1+10T+53T2 |
| 59 | 1−4.89T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+9.79T+67T2 |
| 71 | 1−5.34T+71T2 |
| 73 | 1+1.10T+73T2 |
| 79 | 1+3.10T+79T2 |
| 83 | 1+13.7T+83T2 |
| 89 | 1+7.34T+89T2 |
| 97 | 1−14.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.303884433830111861966787166098, −7.30024699782449396220593784841, −6.45973483613623277103401740760, −6.12865365807960846870641605159, −5.39965968314420612940774502107, −4.72790362872200368450615652547, −3.54280303251370920413461316352, −2.96731371383366497259352898662, −1.57903243034526033198796369456, −0.982644963701242080047788468198,
0.982644963701242080047788468198, 1.57903243034526033198796369456, 2.96731371383366497259352898662, 3.54280303251370920413461316352, 4.72790362872200368450615652547, 5.39965968314420612940774502107, 6.12865365807960846870641605159, 6.45973483613623277103401740760, 7.30024699782449396220593784841, 8.303884433830111861966787166098