Properties

Label 2-5376-1.1-c1-0-44
Degree $2$
Conductor $5376$
Sign $1$
Analytic cond. $42.9275$
Root an. cond. $6.55191$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.44·5-s − 7-s + 9-s + 0.449·11-s + 6.89·13-s − 2.44·15-s + 1.55·17-s + 6.89·19-s + 21-s + 4.44·23-s + 0.999·25-s − 27-s + 6.89·29-s + 2.89·31-s − 0.449·33-s − 2.44·35-s − 2·37-s − 6.89·39-s + 7.34·41-s − 12.8·43-s + 2.44·45-s − 8.89·47-s + 49-s − 1.55·51-s − 10·53-s + 1.10·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.09·5-s − 0.377·7-s + 0.333·9-s + 0.135·11-s + 1.91·13-s − 0.632·15-s + 0.376·17-s + 1.58·19-s + 0.218·21-s + 0.927·23-s + 0.199·25-s − 0.192·27-s + 1.28·29-s + 0.520·31-s − 0.0782·33-s − 0.414·35-s − 0.328·37-s − 1.10·39-s + 1.14·41-s − 1.96·43-s + 0.365·45-s − 1.29·47-s + 0.142·49-s − 0.217·51-s − 1.37·53-s + 0.148·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5376\)    =    \(2^{8} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(42.9275\)
Root analytic conductor: \(6.55191\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.466446556\)
\(L(\frac12)\) \(\approx\) \(2.466446556\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
good5 \( 1 - 2.44T + 5T^{2} \)
11 \( 1 - 0.449T + 11T^{2} \)
13 \( 1 - 6.89T + 13T^{2} \)
17 \( 1 - 1.55T + 17T^{2} \)
19 \( 1 - 6.89T + 19T^{2} \)
23 \( 1 - 4.44T + 23T^{2} \)
29 \( 1 - 6.89T + 29T^{2} \)
31 \( 1 - 2.89T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 - 7.34T + 41T^{2} \)
43 \( 1 + 12.8T + 43T^{2} \)
47 \( 1 + 8.89T + 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 - 4.89T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 9.79T + 67T^{2} \)
71 \( 1 - 5.34T + 71T^{2} \)
73 \( 1 + 1.10T + 73T^{2} \)
79 \( 1 + 3.10T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 + 7.34T + 89T^{2} \)
97 \( 1 - 14.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.303884433830111861966787166098, −7.30024699782449396220593784841, −6.45973483613623277103401740760, −6.12865365807960846870641605159, −5.39965968314420612940774502107, −4.72790362872200368450615652547, −3.54280303251370920413461316352, −2.96731371383366497259352898662, −1.57903243034526033198796369456, −0.982644963701242080047788468198, 0.982644963701242080047788468198, 1.57903243034526033198796369456, 2.96731371383366497259352898662, 3.54280303251370920413461316352, 4.72790362872200368450615652547, 5.39965968314420612940774502107, 6.12865365807960846870641605159, 6.45973483613623277103401740760, 7.30024699782449396220593784841, 8.303884433830111861966787166098

Graph of the $Z$-function along the critical line