L(s) = 1 | + (1.39 + 0.245i)2-s + (−0.101 − 2.99i)3-s + (1.87 + 0.684i)4-s + (0.379 + 0.451i)5-s + (0.595 − 4.20i)6-s + (2.96 − 1.07i)7-s + (2.44 + 1.41i)8-s + (−8.97 + 0.607i)9-s + (0.416 + 0.722i)10-s + (−6.03 + 7.19i)11-s + (1.86 − 5.70i)12-s + (2.11 + 12.0i)13-s + (4.39 − 0.774i)14-s + (1.31 − 1.18i)15-s + (3.06 + 2.57i)16-s + (−24.5 + 14.1i)17-s + ⋯ |
L(s) = 1 | + (0.696 + 0.122i)2-s + (−0.0337 − 0.999i)3-s + (0.469 + 0.171i)4-s + (0.0758 + 0.0903i)5-s + (0.0992 − 0.700i)6-s + (0.423 − 0.154i)7-s + (0.306 + 0.176i)8-s + (−0.997 + 0.0674i)9-s + (0.0416 + 0.0722i)10-s + (−0.548 + 0.653i)11-s + (0.155 − 0.475i)12-s + (0.163 + 0.924i)13-s + (0.313 − 0.0553i)14-s + (0.0877 − 0.0788i)15-s + (0.191 + 0.160i)16-s + (−1.44 + 0.832i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.886+0.462i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.886+0.462i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.886+0.462i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.886+0.462i)
|
Particular Values
L(23) |
≈ |
1.56757−0.384040i |
L(21) |
≈ |
1.56757−0.384040i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39−0.245i)T |
| 3 | 1+(0.101+2.99i)T |
good | 5 | 1+(−0.379−0.451i)T+(−4.34+24.6i)T2 |
| 7 | 1+(−2.96+1.07i)T+(37.5−31.4i)T2 |
| 11 | 1+(6.03−7.19i)T+(−21.0−119.i)T2 |
| 13 | 1+(−2.11−12.0i)T+(−158.+57.8i)T2 |
| 17 | 1+(24.5−14.1i)T+(144.5−250.i)T2 |
| 19 | 1+(−11.2+19.4i)T+(−180.5−312.i)T2 |
| 23 | 1+(−3.44+9.46i)T+(−405.−340.i)T2 |
| 29 | 1+(23.6+4.17i)T+(790.+287.i)T2 |
| 31 | 1+(−42.7−15.5i)T+(736.+617.i)T2 |
| 37 | 1+(15.7+27.2i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(−69.7+12.3i)T+(1.57e3−574.i)T2 |
| 43 | 1+(11.1+9.36i)T+(321.+1.82e3i)T2 |
| 47 | 1+(18.9+51.9i)T+(−1.69e3+1.41e3i)T2 |
| 53 | 1+25.4iT−2.80e3T2 |
| 59 | 1+(−18.4−21.9i)T+(−604.+3.42e3i)T2 |
| 61 | 1+(106.−38.6i)T+(2.85e3−2.39e3i)T2 |
| 67 | 1+(−8.68−49.2i)T+(−4.21e3+1.53e3i)T2 |
| 71 | 1+(7.59−4.38i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(11.7−20.3i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−23.0+130.i)T+(−5.86e3−2.13e3i)T2 |
| 83 | 1+(66.1+11.6i)T+(6.47e3+2.35e3i)T2 |
| 89 | 1+(−62.9−36.3i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−120.−101.i)T+(1.63e3+9.26e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.77380248530032345712245542170, −13.75439647779181284400246889140, −12.94963339391984396789222045863, −11.82081126909820197230120710805, −10.79325377822480876979654928475, −8.749222102230116489596584802193, −7.34770271232115691812181668863, −6.33715799857682233554290907194, −4.62606956103435781375452131127, −2.25567298128436966450156265618,
3.11067959533681590467984962079, 4.78632062244075931598911280742, 5.87461768423812367559929941651, 7.989676169539213054501500528586, 9.460608528645908265153848791031, 10.80538916807334349239540306122, 11.54981274956734410178443121034, 13.11959561308286693741317234771, 14.12426381416141363567509675628, 15.31054401684461119467939147569