L(s) = 1 | + (0.766 − 0.642i)2-s + (−1.36 − 1.07i)3-s + (0.173 − 0.984i)4-s + (0.696 − 0.253i)5-s + (−1.73 + 0.0539i)6-s + (0.717 + 4.07i)7-s + (−0.500 − 0.866i)8-s + (0.703 + 2.91i)9-s + (0.370 − 0.641i)10-s + (−4.27 − 1.55i)11-s + (−1.29 + 1.15i)12-s + (0.662 + 0.556i)13-s + (3.16 + 2.65i)14-s + (−1.21 − 0.401i)15-s + (−0.939 − 0.342i)16-s + (2.17 − 3.77i)17-s + ⋯ |
L(s) = 1 | + (0.541 − 0.454i)2-s + (−0.785 − 0.618i)3-s + (0.0868 − 0.492i)4-s + (0.311 − 0.113i)5-s + (−0.706 + 0.0220i)6-s + (0.271 + 1.53i)7-s + (−0.176 − 0.306i)8-s + (0.234 + 0.972i)9-s + (0.117 − 0.202i)10-s + (−1.28 − 0.468i)11-s + (−0.372 + 0.333i)12-s + (0.183 + 0.154i)13-s + (0.846 + 0.709i)14-s + (−0.314 − 0.103i)15-s + (−0.234 − 0.0855i)16-s + (0.528 − 0.915i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.625+0.780i)Λ(2−s)
Λ(s)=(=(54s/2ΓC(s+1/2)L(s)(0.625+0.780i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.625+0.780i
|
Analytic conductor: |
0.431192 |
Root analytic conductor: |
0.656652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1/2), 0.625+0.780i)
|
Particular Values
L(1) |
≈ |
0.822422−0.395042i |
L(21) |
≈ |
0.822422−0.395042i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.766+0.642i)T |
| 3 | 1+(1.36+1.07i)T |
good | 5 | 1+(−0.696+0.253i)T+(3.83−3.21i)T2 |
| 7 | 1+(−0.717−4.07i)T+(−6.57+2.39i)T2 |
| 11 | 1+(4.27+1.55i)T+(8.42+7.07i)T2 |
| 13 | 1+(−0.662−0.556i)T+(2.25+12.8i)T2 |
| 17 | 1+(−2.17+3.77i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.777+1.34i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.608−3.45i)T+(−21.6−7.86i)T2 |
| 29 | 1+(2.50−2.10i)T+(5.03−28.5i)T2 |
| 31 | 1+(−1.85+10.5i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−0.880+1.52i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.97+1.65i)T+(7.11+40.3i)T2 |
| 43 | 1+(−2.58−0.941i)T+(32.9+27.6i)T2 |
| 47 | 1+(−1.68−9.54i)T+(−44.1+16.0i)T2 |
| 53 | 1−4.00T+53T2 |
| 59 | 1+(1.34−0.489i)T+(45.1−37.9i)T2 |
| 61 | 1+(0.751+4.26i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−10.0−8.42i)T+(11.6+65.9i)T2 |
| 71 | 1+(−2.54+4.40i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.286−0.496i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−5.17+4.34i)T+(13.7−77.7i)T2 |
| 83 | 1+(−7.06+5.92i)T+(14.4−81.7i)T2 |
| 89 | 1+(−6.19−10.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.40+1.96i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.26553877769395835152167961989, −13.71402322914293604695564151867, −12.88134730037421261247844071945, −11.83110003741093156904671035201, −11.06122960206069902803615442099, −9.481003735007022639138362787149, −7.80460859551780265837531810505, −5.88484242553135047079676747998, −5.24154657136006027338953748870, −2.39363991817582668294811212740,
3.94215172792586259298413553251, 5.22042601629672777934718492782, 6.65158643732470709345400657438, 8.002830441724452405031123696588, 10.20068395613446654696349418484, 10.65490836344145337633912221483, 12.27438631536301560065151817138, 13.38226561288601886899943686693, 14.49679005561854283864826627467, 15.60792211901933189114972986063