L(s) = 1 | + (0.909 + 1.08i)2-s + (2.14 − 2.09i)3-s + (−0.347 + 1.96i)4-s + (0.387 + 1.06i)5-s + (4.22 + 0.418i)6-s + (−0.332 − 1.88i)7-s + (−2.44 + 1.41i)8-s + (0.205 − 8.99i)9-s + (−0.800 + 1.38i)10-s + (−6.05 + 16.6i)11-s + (3.38 + 4.95i)12-s + (−9.14 − 7.67i)13-s + (1.73 − 2.07i)14-s + (3.06 + 1.47i)15-s + (−3.75 − 1.36i)16-s + (−2.93 − 1.69i)17-s + ⋯ |
L(s) = 1 | + (0.454 + 0.541i)2-s + (0.715 − 0.698i)3-s + (−0.0868 + 0.492i)4-s + (0.0774 + 0.212i)5-s + (0.703 + 0.0696i)6-s + (−0.0474 − 0.269i)7-s + (−0.306 + 0.176i)8-s + (0.0228 − 0.999i)9-s + (−0.0800 + 0.138i)10-s + (−0.550 + 1.51i)11-s + (0.282 + 0.412i)12-s + (−0.703 − 0.590i)13-s + (0.124 − 0.148i)14-s + (0.204 + 0.0980i)15-s + (−0.234 − 0.0855i)16-s + (−0.172 − 0.0998i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.959−0.281i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.959−0.281i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.959−0.281i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.959−0.281i)
|
Particular Values
L(23) |
≈ |
1.61130+0.231750i |
L(21) |
≈ |
1.61130+0.231750i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.909−1.08i)T |
| 3 | 1+(−2.14+2.09i)T |
good | 5 | 1+(−0.387−1.06i)T+(−19.1+16.0i)T2 |
| 7 | 1+(0.332+1.88i)T+(−46.0+16.7i)T2 |
| 11 | 1+(6.05−16.6i)T+(−92.6−77.7i)T2 |
| 13 | 1+(9.14+7.67i)T+(29.3+166.i)T2 |
| 17 | 1+(2.93+1.69i)T+(144.5+250.i)T2 |
| 19 | 1+(10.2+17.7i)T+(−180.5+312.i)T2 |
| 23 | 1+(−0.678−0.119i)T+(497.+180.i)T2 |
| 29 | 1+(−34.6−41.3i)T+(−146.+828.i)T2 |
| 31 | 1+(7.33−41.6i)T+(−903.−328.i)T2 |
| 37 | 1+(−8.24+14.2i)T+(−684.5−1.18e3i)T2 |
| 41 | 1+(−26.0+30.9i)T+(−291.−1.65e3i)T2 |
| 43 | 1+(−66.4−24.1i)T+(1.41e3+1.18e3i)T2 |
| 47 | 1+(62.9−11.1i)T+(2.07e3−755.i)T2 |
| 53 | 1+17.6iT−2.80e3T2 |
| 59 | 1+(19.1+52.5i)T+(−2.66e3+2.23e3i)T2 |
| 61 | 1+(−11.5−65.3i)T+(−3.49e3+1.27e3i)T2 |
| 67 | 1+(17.2+14.5i)T+(779.+4.42e3i)T2 |
| 71 | 1+(43.0+24.8i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(45.2+78.3i)T+(−2.66e3+4.61e3i)T2 |
| 79 | 1+(57.2−48.0i)T+(1.08e3−6.14e3i)T2 |
| 83 | 1+(−8.15−9.72i)T+(−1.19e3+6.78e3i)T2 |
| 89 | 1+(−58.5+33.7i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(44.2+16.1i)T+(7.20e3+6.04e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.90772595066502435647568610329, −14.22230990021033691002408344258, −12.88226591393590831507570933532, −12.39250973225327104725136708672, −10.41008307445508280843543008784, −8.926589304882862890056795410043, −7.51851863961740118387786042875, −6.76710677094160569160493727486, −4.75726040545208337705403596433, −2.69634484913065404676123428739,
2.68933398913361649537474341982, 4.28662529850780581039586903138, 5.81215819023315919655327727023, 8.103107543721627101831930090124, 9.258061038737906162539983676691, 10.42199727332834172671937324208, 11.53409530170406675839759242730, 13.00294870510459137150550750266, 13.93630217019487460819943914325, 14.87122689168945020002994630760