L(s) = 1 | + (−1.22 − 0.707i)2-s + (0.999 + 1.73i)4-s + (4.5 − 2.59i)5-s + (4.17 − 7.22i)7-s − 2.82i·8-s − 7.34·10-s + (−0.825 − 0.476i)11-s + (4.84 + 8.39i)13-s + (−10.2 + 5.90i)14-s + (−2.00 + 3.46i)16-s + 18.8i·17-s − 24.6·19-s + (8.99 + 5.19i)20-s + (0.674 + 1.16i)22-s + (−0.825 + 0.476i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.900 − 0.519i)5-s + (0.596 − 1.03i)7-s − 0.353i·8-s − 0.734·10-s + (−0.0750 − 0.0433i)11-s + (0.372 + 0.645i)13-s + (−0.730 + 0.421i)14-s + (−0.125 + 0.216i)16-s + 1.11i·17-s − 1.29·19-s + (0.449 + 0.259i)20-s + (0.0306 + 0.0530i)22-s + (−0.0359 + 0.0207i)23-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.703+0.710i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.703+0.710i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.703+0.710i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.703+0.710i)
|
Particular Values
L(23) |
≈ |
0.935931−0.390207i |
L(21) |
≈ |
0.935931−0.390207i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.22+0.707i)T |
| 3 | 1 |
good | 5 | 1+(−4.5+2.59i)T+(12.5−21.6i)T2 |
| 7 | 1+(−4.17+7.22i)T+(−24.5−42.4i)T2 |
| 11 | 1+(0.825+0.476i)T+(60.5+104.i)T2 |
| 13 | 1+(−4.84−8.39i)T+(−84.5+146.i)T2 |
| 17 | 1−18.8iT−289T2 |
| 19 | 1+24.6T+361T2 |
| 23 | 1+(0.825−0.476i)T+(264.5−458.i)T2 |
| 29 | 1+(11.8+6.84i)T+(420.5+728.i)T2 |
| 31 | 1+(1.52+2.63i)T+(−480.5+832.i)T2 |
| 37 | 1−46.6T+1.36e3T2 |
| 41 | 1+(−9.45+5.45i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(22.5−39.0i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(39.2+22.6i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1−94.3iT−2.80e3T2 |
| 59 | 1+(−16.2+9.39i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(6.54−11.3i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(37.5+64.9i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+18.0iT−5.04e3T2 |
| 73 | 1+7.90T+5.32e3T2 |
| 79 | 1+(−21.8+37.8i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−112.−65.1i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+145.iT−7.92e3T2 |
| 97 | 1+(−54.9+95.1i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.91651964856648928465677083397, −13.65281874160969723183124765667, −12.79672110576093955537705909403, −11.21624057442467680263613425235, −10.30932528085668470810545272604, −9.093540035510732274424143048834, −7.896440313459928808872460266923, −6.25659367932188497082465774961, −4.27572217217527577589462190887, −1.65153521327229550390934101392,
2.33306185666327441288755425339, 5.33892658796957644741213937444, 6.49664812410755589559403732794, 8.124185686916382445432521365774, 9.268836324445037925403635260131, 10.43669499780677752900430125500, 11.58493321099851535231019597427, 13.11915203262088770438518397429, 14.44690765156459786867907858091, 15.19424444203291778637267969725