Properties

Label 2-540-1.1-c1-0-3
Degree $2$
Conductor $540$
Sign $-1$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s + 6·11-s − 4·13-s − 3·17-s − 7·19-s − 9·23-s + 25-s − 7·31-s + 4·35-s + 2·37-s + 6·41-s + 2·43-s + 9·49-s + 9·53-s − 6·55-s − 12·59-s − 7·61-s + 4·65-s + 2·67-s + 6·71-s + 2·73-s − 24·77-s − 79-s + 9·83-s + 3·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s + 1.80·11-s − 1.10·13-s − 0.727·17-s − 1.60·19-s − 1.87·23-s + 1/5·25-s − 1.25·31-s + 0.676·35-s + 0.328·37-s + 0.937·41-s + 0.304·43-s + 9/7·49-s + 1.23·53-s − 0.809·55-s − 1.56·59-s − 0.896·61-s + 0.496·65-s + 0.244·67-s + 0.712·71-s + 0.234·73-s − 2.73·77-s − 0.112·79-s + 0.987·83-s + 0.325·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 9 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26749988301452719826126975406, −9.417711577272068281237641496124, −8.856595360592870575705997337653, −7.54718606412465650962520842778, −6.58725999445058514353818613025, −6.09229032628269875186741176691, −4.32920621312090522257456351027, −3.71386780336790110217167054260, −2.23405403265248415565008998072, 0, 2.23405403265248415565008998072, 3.71386780336790110217167054260, 4.32920621312090522257456351027, 6.09229032628269875186741176691, 6.58725999445058514353818613025, 7.54718606412465650962520842778, 8.856595360592870575705997337653, 9.417711577272068281237641496124, 10.26749988301452719826126975406

Graph of the $Z$-function along the critical line