L(s) = 1 | − 5-s − 4·7-s + 6·11-s − 4·13-s − 3·17-s − 7·19-s − 9·23-s + 25-s − 7·31-s + 4·35-s + 2·37-s + 6·41-s + 2·43-s + 9·49-s + 9·53-s − 6·55-s − 12·59-s − 7·61-s + 4·65-s + 2·67-s + 6·71-s + 2·73-s − 24·77-s − 79-s + 9·83-s + 3·85-s − 6·89-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.51·7-s + 1.80·11-s − 1.10·13-s − 0.727·17-s − 1.60·19-s − 1.87·23-s + 1/5·25-s − 1.25·31-s + 0.676·35-s + 0.328·37-s + 0.937·41-s + 0.304·43-s + 9/7·49-s + 1.23·53-s − 0.809·55-s − 1.56·59-s − 0.896·61-s + 0.496·65-s + 0.244·67-s + 0.712·71-s + 0.234·73-s − 2.73·77-s − 0.112·79-s + 0.987·83-s + 0.325·85-s − 0.635·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 - 6 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + 7 T + p T^{2} \) |
| 23 | \( 1 + 9 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + 7 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 2 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 - 9 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 + 7 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 - 9 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26749988301452719826126975406, −9.417711577272068281237641496124, −8.856595360592870575705997337653, −7.54718606412465650962520842778, −6.58725999445058514353818613025, −6.09229032628269875186741176691, −4.32920621312090522257456351027, −3.71386780336790110217167054260, −2.23405403265248415565008998072, 0,
2.23405403265248415565008998072, 3.71386780336790110217167054260, 4.32920621312090522257456351027, 6.09229032628269875186741176691, 6.58725999445058514353818613025, 7.54718606412465650962520842778, 8.856595360592870575705997337653, 9.417711577272068281237641496124, 10.26749988301452719826126975406