Properties

Label 2-540-1.1-c3-0-11
Degree $2$
Conductor $540$
Sign $-1$
Analytic cond. $31.8610$
Root an. cond. $5.64455$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s − 22·7-s + 9·11-s + 17·13-s + 75·17-s − 4·19-s − 183·23-s + 25·25-s − 129·29-s − 187·31-s − 110·35-s − 34·37-s − 264·41-s + 443·43-s − 609·47-s + 141·49-s + 228·53-s + 45·55-s − 60·59-s − 454·61-s + 85·65-s − 244·67-s − 444·71-s + 398·73-s − 198·77-s − 349·79-s − 1.03e3·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.18·7-s + 0.246·11-s + 0.362·13-s + 1.07·17-s − 0.0482·19-s − 1.65·23-s + 1/5·25-s − 0.826·29-s − 1.08·31-s − 0.531·35-s − 0.151·37-s − 1.00·41-s + 1.57·43-s − 1.89·47-s + 0.411·49-s + 0.590·53-s + 0.110·55-s − 0.132·59-s − 0.952·61-s + 0.162·65-s − 0.444·67-s − 0.742·71-s + 0.638·73-s − 0.293·77-s − 0.497·79-s − 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(31.8610\)
Root analytic conductor: \(5.64455\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 540,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - p T \)
good7 \( 1 + 22 T + p^{3} T^{2} \)
11 \( 1 - 9 T + p^{3} T^{2} \)
13 \( 1 - 17 T + p^{3} T^{2} \)
17 \( 1 - 75 T + p^{3} T^{2} \)
19 \( 1 + 4 T + p^{3} T^{2} \)
23 \( 1 + 183 T + p^{3} T^{2} \)
29 \( 1 + 129 T + p^{3} T^{2} \)
31 \( 1 + 187 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 + 264 T + p^{3} T^{2} \)
43 \( 1 - 443 T + p^{3} T^{2} \)
47 \( 1 + 609 T + p^{3} T^{2} \)
53 \( 1 - 228 T + p^{3} T^{2} \)
59 \( 1 + 60 T + p^{3} T^{2} \)
61 \( 1 + 454 T + p^{3} T^{2} \)
67 \( 1 + 244 T + p^{3} T^{2} \)
71 \( 1 + 444 T + p^{3} T^{2} \)
73 \( 1 - 398 T + p^{3} T^{2} \)
79 \( 1 + 349 T + p^{3} T^{2} \)
83 \( 1 + 1038 T + p^{3} T^{2} \)
89 \( 1 + 852 T + p^{3} T^{2} \)
97 \( 1 - 914 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.848574306254088756834546258408, −9.330565356972477930997669022149, −8.206673622128876383368728565273, −7.16445544815383182245490957336, −6.17455688130664656771873512598, −5.55077084950083117482668011670, −4.00169962641131954287396349961, −3.10766569528995328481695372530, −1.66864707386110424710874855782, 0, 1.66864707386110424710874855782, 3.10766569528995328481695372530, 4.00169962641131954287396349961, 5.55077084950083117482668011670, 6.17455688130664656771873512598, 7.16445544815383182245490957336, 8.206673622128876383368728565273, 9.330565356972477930997669022149, 9.848574306254088756834546258408

Graph of the $Z$-function along the critical line