Properties

Label 2-5408-1.1-c1-0-10
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.892·3-s − 2.29·5-s − 0.141·7-s − 2.20·9-s + 0.287·11-s + 2.05·15-s − 2.71·17-s − 7.96·19-s + 0.126·21-s − 4.74·23-s + 0.275·25-s + 4.64·27-s + 1.65·29-s − 4.01·31-s − 0.257·33-s + 0.325·35-s − 1.62·37-s + 3.90·41-s + 5.08·43-s + 5.05·45-s − 4.97·47-s − 6.97·49-s + 2.41·51-s − 8.08·53-s − 0.661·55-s + 7.11·57-s + 8.10·59-s + ⋯
L(s)  = 1  − 0.515·3-s − 1.02·5-s − 0.0536·7-s − 0.734·9-s + 0.0868·11-s + 0.529·15-s − 0.657·17-s − 1.82·19-s + 0.0276·21-s − 0.988·23-s + 0.0551·25-s + 0.893·27-s + 0.308·29-s − 0.720·31-s − 0.0447·33-s + 0.0550·35-s − 0.267·37-s + 0.610·41-s + 0.775·43-s + 0.754·45-s − 0.725·47-s − 0.997·49-s + 0.338·51-s − 1.11·53-s − 0.0891·55-s + 0.942·57-s + 1.05·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3632018302\)
\(L(\frac12)\) \(\approx\) \(0.3632018302\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 0.892T + 3T^{2} \)
5 \( 1 + 2.29T + 5T^{2} \)
7 \( 1 + 0.141T + 7T^{2} \)
11 \( 1 - 0.287T + 11T^{2} \)
17 \( 1 + 2.71T + 17T^{2} \)
19 \( 1 + 7.96T + 19T^{2} \)
23 \( 1 + 4.74T + 23T^{2} \)
29 \( 1 - 1.65T + 29T^{2} \)
31 \( 1 + 4.01T + 31T^{2} \)
37 \( 1 + 1.62T + 37T^{2} \)
41 \( 1 - 3.90T + 41T^{2} \)
43 \( 1 - 5.08T + 43T^{2} \)
47 \( 1 + 4.97T + 47T^{2} \)
53 \( 1 + 8.08T + 53T^{2} \)
59 \( 1 - 8.10T + 59T^{2} \)
61 \( 1 - 7.78T + 61T^{2} \)
67 \( 1 - 7.26T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 + 11.8T + 73T^{2} \)
79 \( 1 - 8.82T + 79T^{2} \)
83 \( 1 + 11.1T + 83T^{2} \)
89 \( 1 - 1.31T + 89T^{2} \)
97 \( 1 + 8.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.282191805006717351961136400444, −7.50346440554282814520798167966, −6.60214626712984519773052965376, −6.15023952495865735512481621195, −5.28164049229129898107356623342, −4.35747025196864892242676702868, −3.91721376063971400222093917680, −2.86052423566590440201090672212, −1.89944135227106728484723476074, −0.31501239345256620594832615604, 0.31501239345256620594832615604, 1.89944135227106728484723476074, 2.86052423566590440201090672212, 3.91721376063971400222093917680, 4.35747025196864892242676702868, 5.28164049229129898107356623342, 6.15023952495865735512481621195, 6.60214626712984519773052965376, 7.50346440554282814520798167966, 8.282191805006717351961136400444

Graph of the $Z$-function along the critical line