Properties

Label 2-5408-1.1-c1-0-129
Degree $2$
Conductor $5408$
Sign $-1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.59·3-s + 2.24·5-s + 2.30·7-s − 0.445·9-s + 4.16·11-s − 3.59·15-s − 0.554·17-s − 7.75·19-s − 3.69·21-s + 2.48·23-s + 0.0489·25-s + 5.50·27-s − 5.96·29-s − 2.94·31-s − 6.65·33-s + 5.19·35-s − 4.18·37-s − 11.5·41-s − 0.648·43-s − 0.999·45-s − 5.93·47-s − 1.66·49-s + 0.887·51-s + 1.40·53-s + 9.35·55-s + 12.3·57-s − 10.4·59-s + ⋯
L(s)  = 1  − 0.922·3-s + 1.00·5-s + 0.873·7-s − 0.148·9-s + 1.25·11-s − 0.927·15-s − 0.134·17-s − 1.77·19-s − 0.805·21-s + 0.518·23-s + 0.00978·25-s + 1.05·27-s − 1.10·29-s − 0.528·31-s − 1.15·33-s + 0.877·35-s − 0.688·37-s − 1.81·41-s − 0.0989·43-s − 0.149·45-s − 0.865·47-s − 0.237·49-s + 0.124·51-s + 0.193·53-s + 1.26·55-s + 1.64·57-s − 1.36·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + 1.59T + 3T^{2} \)
5 \( 1 - 2.24T + 5T^{2} \)
7 \( 1 - 2.30T + 7T^{2} \)
11 \( 1 - 4.16T + 11T^{2} \)
17 \( 1 + 0.554T + 17T^{2} \)
19 \( 1 + 7.75T + 19T^{2} \)
23 \( 1 - 2.48T + 23T^{2} \)
29 \( 1 + 5.96T + 29T^{2} \)
31 \( 1 + 2.94T + 31T^{2} \)
37 \( 1 + 4.18T + 37T^{2} \)
41 \( 1 + 11.5T + 41T^{2} \)
43 \( 1 + 0.648T + 43T^{2} \)
47 \( 1 + 5.93T + 47T^{2} \)
53 \( 1 - 1.40T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 - 12.0T + 67T^{2} \)
71 \( 1 + 12.9T + 71T^{2} \)
73 \( 1 + 2.59T + 73T^{2} \)
79 \( 1 + 3.16T + 79T^{2} \)
83 \( 1 - 8.92T + 83T^{2} \)
89 \( 1 - 5.47T + 89T^{2} \)
97 \( 1 + 8.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80884595679647160670663038480, −6.74026299517629262271318027675, −6.38115573517461707805027622576, −5.69271070709273428701157891341, −5.00911947043402216521099022452, −4.35048105569482034251034018175, −3.31739178582970529223305062862, −1.96327777650498256327322095937, −1.53262116854449723263160816685, 0, 1.53262116854449723263160816685, 1.96327777650498256327322095937, 3.31739178582970529223305062862, 4.35048105569482034251034018175, 5.00911947043402216521099022452, 5.69271070709273428701157891341, 6.38115573517461707805027622576, 6.74026299517629262271318027675, 7.80884595679647160670663038480

Graph of the $Z$-function along the critical line