L(s) = 1 | − 2·4-s + 5-s − 7-s + 2·13-s + 4·16-s − 6·17-s − 7·19-s − 2·20-s + 6·23-s + 25-s + 2·28-s − 31-s − 35-s − 7·37-s + 6·41-s + 8·43-s − 6·49-s − 4·52-s + 6·53-s + 12·59-s − 61-s − 8·64-s + 2·65-s − 7·67-s + 12·68-s − 6·71-s − 13·73-s + ⋯ |
L(s) = 1 | − 4-s + 0.447·5-s − 0.377·7-s + 0.554·13-s + 16-s − 1.45·17-s − 1.60·19-s − 0.447·20-s + 1.25·23-s + 1/5·25-s + 0.377·28-s − 0.179·31-s − 0.169·35-s − 1.15·37-s + 0.937·41-s + 1.21·43-s − 6/7·49-s − 0.554·52-s + 0.824·53-s + 1.56·59-s − 0.128·61-s − 64-s + 0.248·65-s − 0.855·67-s + 1.45·68-s − 0.712·71-s − 1.52·73-s + ⋯ |
Λ(s)=(=(5445s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5445s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.200307971 |
L(21) |
≈ |
1.200307971 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 11 | 1 |
good | 2 | 1+pT2 |
| 7 | 1+T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+7T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1+pT2 |
| 31 | 1+T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+T+pT2 |
| 67 | 1+7T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+13T+pT2 |
| 79 | 1−11T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−18T+pT2 |
| 97 | 1+T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.485453916851019492858569664820, −7.43711424473686269431816778687, −6.61280187235421899316911179550, −6.05793013905856029986241325619, −5.20779791692855593559951650094, −4.44793309957623836809852653633, −3.87307626331343778310808010397, −2.84635947998777897362121685781, −1.86441514423774169059856966061, −0.58620388806846202709441772114,
0.58620388806846202709441772114, 1.86441514423774169059856966061, 2.84635947998777897362121685781, 3.87307626331343778310808010397, 4.44793309957623836809852653633, 5.20779791692855593559951650094, 6.05793013905856029986241325619, 6.61280187235421899316911179550, 7.43711424473686269431816778687, 8.485453916851019492858569664820