L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 5·11-s + 12-s − 13-s + 14-s − 15-s + 16-s − 3·17-s + 18-s − 19-s − 20-s + 21-s + 5·22-s + 3·23-s + 24-s − 4·25-s − 26-s + 27-s + 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s − 0.229·19-s − 0.223·20-s + 0.218·21-s + 1.06·22-s + 0.625·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.671567759 |
L(21) |
≈ |
2.671567759 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 7 | 1−T |
| 13 | 1+T |
good | 5 | 1+T+pT2 |
| 11 | 1−5T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1−9T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+11T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+5T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+15T+pT2 |
| 67 | 1+2T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−11T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1+14T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99185846587921421514805776622, −9.946457360732899024095075692007, −8.892862878325232361751976646852, −8.169592135054023904644454836931, −7.01673151448316654720589442436, −6.38424510864517867781756363293, −4.87504488106939908766189839095, −4.12151923019463718852682975283, −3.08986072016271957515480040072, −1.65008882553677401575623098637,
1.65008882553677401575623098637, 3.08986072016271957515480040072, 4.12151923019463718852682975283, 4.87504488106939908766189839095, 6.38424510864517867781756363293, 7.01673151448316654720589442436, 8.169592135054023904644454836931, 8.892862878325232361751976646852, 9.946457360732899024095075692007, 10.99185846587921421514805776622