L(s) = 1 | + 4·2-s − 9·3-s + 16·4-s + 93·5-s − 36·6-s − 49·7-s + 64·8-s + 81·9-s + 372·10-s − 302·11-s − 144·12-s − 169·13-s − 196·14-s − 837·15-s + 256·16-s − 488·17-s + 324·18-s + 2.05e3·19-s + 1.48e3·20-s + 441·21-s − 1.20e3·22-s + 59·23-s − 576·24-s + 5.52e3·25-s − 676·26-s − 729·27-s − 784·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.66·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.17·10-s − 0.752·11-s − 0.288·12-s − 0.277·13-s − 0.267·14-s − 0.960·15-s + 1/4·16-s − 0.409·17-s + 0.235·18-s + 1.30·19-s + 0.831·20-s + 0.218·21-s − 0.532·22-s + 0.0232·23-s − 0.204·24-s + 1.76·25-s − 0.196·26-s − 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(546s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.915360644 |
L(21) |
≈ |
3.915360644 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1+p2T |
| 7 | 1+p2T |
| 13 | 1+p2T |
good | 5 | 1−93T+p5T2 |
| 11 | 1+302T+p5T2 |
| 17 | 1+488T+p5T2 |
| 19 | 1−2053T+p5T2 |
| 23 | 1−59T+p5T2 |
| 29 | 1−5871T+p5T2 |
| 31 | 1−3861T+p5T2 |
| 37 | 1−12388T+p5T2 |
| 41 | 1−2602T+p5T2 |
| 43 | 1+14221T+p5T2 |
| 47 | 1+21645T+p5T2 |
| 53 | 1+7781T+p5T2 |
| 59 | 1−19072T+p5T2 |
| 61 | 1−13954T+p5T2 |
| 67 | 1−2694T+p5T2 |
| 71 | 1−82032T+p5T2 |
| 73 | 1−6503T+p5T2 |
| 79 | 1−28535T+p5T2 |
| 83 | 1−15019T+p5T2 |
| 89 | 1−41979T+p5T2 |
| 97 | 1+57405T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.944785592925614786115180717441, −9.612688043862781438649632375354, −8.134987767750928694307930019746, −6.84334186655392320241116812926, −6.22550362869951504678123493488, −5.36230832545086776772802267502, −4.74977725312544173653801633961, −3.08019766612721338552325304671, −2.18849388548179538541415294718, −0.927872047644358692894540287180,
0.927872047644358692894540287180, 2.18849388548179538541415294718, 3.08019766612721338552325304671, 4.74977725312544173653801633961, 5.36230832545086776772802267502, 6.22550362869951504678123493488, 6.84334186655392320241116812926, 8.134987767750928694307930019746, 9.612688043862781438649632375354, 9.944785592925614786115180717441