L(s) = 1 | + 8·2-s − 27·3-s + 64·4-s − 135·5-s − 216·6-s + 343·7-s + 512·8-s + 729·9-s − 1.08e3·10-s + 4.19e3·11-s − 1.72e3·12-s + 2.19e3·13-s + 2.74e3·14-s + 3.64e3·15-s + 4.09e3·16-s − 1.27e4·17-s + 5.83e3·18-s − 2.82e4·19-s − 8.64e3·20-s − 9.26e3·21-s + 3.35e4·22-s − 5.70e4·23-s − 1.38e4·24-s − 5.99e4·25-s + 1.75e4·26-s − 1.96e4·27-s + 2.19e4·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.482·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.341·10-s + 0.950·11-s − 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.278·15-s + 1/4·16-s − 0.628·17-s + 0.235·18-s − 0.943·19-s − 0.241·20-s − 0.218·21-s + 0.672·22-s − 0.977·23-s − 0.204·24-s − 0.766·25-s + 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(546s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p3T |
| 3 | 1+p3T |
| 7 | 1−p3T |
| 13 | 1−p3T |
good | 5 | 1+27pT+p7T2 |
| 11 | 1−4197T+p7T2 |
| 17 | 1+12735T+p7T2 |
| 19 | 1+28213T+p7T2 |
| 23 | 1+57039T+p7T2 |
| 29 | 1+10269T+p7T2 |
| 31 | 1−98276T+p7T2 |
| 37 | 1+352033T+p7T2 |
| 41 | 1−473172T+p7T2 |
| 43 | 1−891395T+p7T2 |
| 47 | 1−684984T+p7T2 |
| 53 | 1−271002T+p7T2 |
| 59 | 1+954024T+p7T2 |
| 61 | 1−3197159T+p7T2 |
| 67 | 1+2902018T+p7T2 |
| 71 | 1+4599768T+p7T2 |
| 73 | 1−1277111T+p7T2 |
| 79 | 1+1928494T+p7T2 |
| 83 | 1+355674T+p7T2 |
| 89 | 1+217854T+p7T2 |
| 97 | 1+4400758T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.214274797297948456064618775694, −8.213663247073090905588359620909, −7.21830599901927250170162794147, −6.33534133821146902410671781088, −5.59675108818321936155218270203, −4.24319206421528847620621857468, −4.02066188337132426350134019025, −2.39825111046784900767692870102, −1.29806096478780927900362405597, 0,
1.29806096478780927900362405597, 2.39825111046784900767692870102, 4.02066188337132426350134019025, 4.24319206421528847620621857468, 5.59675108818321936155218270203, 6.33534133821146902410671781088, 7.21830599901927250170162794147, 8.213663247073090905588359620909, 9.214274797297948456064618775694