L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + 0.732i·5-s + (−0.866 − 0.499i)6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + (0.366 + 0.633i)10-s + (4.5 − 2.59i)11-s − 0.999·12-s + (0.866 − 3.5i)13-s + 0.999·14-s + (0.633 − 0.366i)15-s + (−0.5 − 0.866i)16-s + (−1.13 + 1.96i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s + 0.327i·5-s + (−0.353 − 0.204i)6-s + (0.327 + 0.188i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (0.115 + 0.200i)10-s + (1.35 − 0.783i)11-s − 0.288·12-s + (0.240 − 0.970i)13-s + 0.267·14-s + (0.163 − 0.0945i)15-s + (−0.125 − 0.216i)16-s + (−0.275 + 0.476i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58510 - 1.20823i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58510 - 1.20823i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-0.866 + 3.5i)T \) |
good | 5 | \( 1 - 0.732iT - 5T^{2} \) |
| 11 | \( 1 + (-4.5 + 2.59i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.13 - 1.96i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.401 + 0.232i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.73 + 6.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.76 - 3.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.26iT - 31T^{2} \) |
| 37 | \( 1 + (-5.83 + 3.36i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.33 - 4.23i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.36 - 7.56i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.92iT - 47T^{2} \) |
| 53 | \( 1 + 9.92T + 53T^{2} \) |
| 59 | \( 1 + (-7.73 - 4.46i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.86 - 3.23i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.66 + 5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.29 - 3.63i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.46iT - 73T^{2} \) |
| 79 | \( 1 - 9T + 79T^{2} \) |
| 83 | \( 1 - 9.26iT - 83T^{2} \) |
| 89 | \( 1 + (14.5 - 8.42i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (12.2 + 7.09i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98818831520048276307149138032, −9.993870318793570289961264069648, −8.743238234612674527219204522098, −7.967288604788083818557224881256, −6.52543997429274100138818482948, −6.21537209994820167311612232207, −4.97470069741193896304403926685, −3.80530960900091386705203995356, −2.63938249488714978254864761019, −1.14369903608284725194696881675,
1.74365207528250797515571452263, 3.62903464659131082213049936290, 4.41470713949315019862199537618, 5.21206160125379937896494216959, 6.46706840243440355843281942084, 7.06230048433254122061983068154, 8.363042712629729854518786948261, 9.251461091978430513803618732640, 10.00927162009268463229537775197, 11.34316495980674868734778896986