L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + 0.732i·5-s + (−0.866 − 0.499i)6-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + (0.366 + 0.633i)10-s + (4.5 − 2.59i)11-s − 0.999·12-s + (0.866 − 3.5i)13-s + 0.999·14-s + (0.633 − 0.366i)15-s + (−0.5 − 0.866i)16-s + (−1.13 + 1.96i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s + 0.327i·5-s + (−0.353 − 0.204i)6-s + (0.327 + 0.188i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (0.115 + 0.200i)10-s + (1.35 − 0.783i)11-s − 0.288·12-s + (0.240 − 0.970i)13-s + 0.267·14-s + (0.163 − 0.0945i)15-s + (−0.125 − 0.216i)16-s + (−0.275 + 0.476i)17-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)(0.265+0.964i)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)(0.265+0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
546
= 2⋅3⋅7⋅13
|
Sign: |
0.265+0.964i
|
Analytic conductor: |
4.35983 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ546(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 546, ( :1/2), 0.265+0.964i)
|
Particular Values
L(1) |
≈ |
1.58510−1.20823i |
L(21) |
≈ |
1.58510−1.20823i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.5+0.866i)T |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1+(−0.866+3.5i)T |
good | 5 | 1−0.732iT−5T2 |
| 11 | 1+(−4.5+2.59i)T+(5.5−9.52i)T2 |
| 17 | 1+(1.13−1.96i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.401+0.232i)T+(9.5+16.4i)T2 |
| 23 | 1+(3.73+6.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.76−3.06i)T+(−14.5+25.1i)T2 |
| 31 | 1+3.26iT−31T2 |
| 37 | 1+(−5.83+3.36i)T+(18.5−32.0i)T2 |
| 41 | 1+(7.33−4.23i)T+(20.5−35.5i)T2 |
| 43 | 1+(4.36−7.56i)T+(−21.5−37.2i)T2 |
| 47 | 1−3.92iT−47T2 |
| 53 | 1+9.92T+53T2 |
| 59 | 1+(−7.73−4.46i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.86−3.23i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−8.66+5i)T+(33.5−58.0i)T2 |
| 71 | 1+(−6.29−3.63i)T+(35.5+61.4i)T2 |
| 73 | 1+1.46iT−73T2 |
| 79 | 1−9T+79T2 |
| 83 | 1−9.26iT−83T2 |
| 89 | 1+(14.5−8.42i)T+(44.5−77.0i)T2 |
| 97 | 1+(12.2+7.09i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98818831520048276307149138032, −9.993870318793570289961264069648, −8.743238234612674527219204522098, −7.967288604788083818557224881256, −6.52543997429274100138818482948, −6.21537209994820167311612232207, −4.97470069741193896304403926685, −3.80530960900091386705203995356, −2.63938249488714978254864761019, −1.14369903608284725194696881675,
1.74365207528250797515571452263, 3.62903464659131082213049936290, 4.41470713949315019862199537618, 5.21206160125379937896494216959, 6.46706840243440355843281942084, 7.06230048433254122061983068154, 8.363042712629729854518786948261, 9.251461091978430513803618732640, 10.00927162009268463229537775197, 11.34316495980674868734778896986